
MASTER THESIS

Proof Theory of Circular Description
Logics

Author:
Josephine Femke DIK

Supervisor:
Dr. Bahareh AFSHARI

A thesis submitted in fulfillment of the requirements
for the Master in Logic, 30 credits

in the

Faculty of Humanities
Department of Philosophy, Linguistics and Theory of Science

June 22, 2022

https://www.gu.se/
https://www.gu.se/en/humanities
https://www.gu.se/en/flov

i

“Beauty is Nature in perfection; circularity is its chief attribute. Behold the full moon, the
enchanting golf ball, the domes of splendid temples, the huckleberry pie, the wedding ring,
the circus ring, the ring for the waiter, and the ‘round’ of drinks.”

O. Henry

ii

UNIVERSITY OF GOTHENBURG

Abstract
Faculty of Humanities

Department of Philosophy, Linguistics and Theory of Science

Master in Logic, 30 credits

Proof Theory of Circular Description Logics

by Josephine Femke DIK

In [12], Hofmann introduces a sequent calculus for the description logic EL where
the TBoxes allow for circular concept definitions. In this thesis, we apply this frame-
work to a family of DLs which allow for circular TBoxes. We start off by adjusting
the calculus for the class of frame-based DLs, with base logic FL0. We continue
to the attribute languages AL and ALE . For these calculi, we prove soundness
and completeness with respect to greatest fixpoint semantics for their fragments
AL′ and ALE ′, using Hofmann’s strategy. When applying the theory to a logic
including disjunction, we require a different strategy and introduce the notion of
pre-interpretation for the soundness and completeness proofs. Then, we acknowl-
edge the drawbacks of considering only greatest fixpoint semantics when it comes to
circular definitions, and propose a calculus that includes greatest- and least-fixpoint
semantics in one. Finally, we discuss the drawbacks of Hofmann’s system for the
classical logic ALC by discussing the consequences for the proofs when including
the disjunction or negation, and give suggestions for future research.

HTTPS://WWW.GU.SE/
https://www.gu.se/en/humanities
https://www.gu.se/en/flov

iii

Acknowledgements
First and foremost, I want to thank my supervisor Bahareh. Not only is it clear that
you are a very knowledgeable logician who taught me a lot in both life and logic,
but your never wavering optimism, faith and enthusiasm were truly inspiring and
a pleasure to work with.

Then, I would like to thank Fredrik. For being my teacher in 8 out of the 13
courses, but also for always being helpful and supportive in any matters regarding
the program, and mostly for reminding me that “life is always more important than
logic”.

I want to thank the other two members of the Thesis Trinity: Johanna and Orvar,
for creating a space to share all our thesis doubts, frustrations and stress, and provide
each other with helpful feedback and comforting words.

The rest of the logic department, Rasmus, Graham, Martin, the babies1 and the
PhD students, I want to thank you for all the great lectures, dealing with our shenani-
gans, the fun lunch breaks, the coffee, delicious fikas, and all the emotional support
during the thesis. Starting off so small, it is great to see how much the logic group
has grown and I enjoyed being part of this community.

Then, the Fluffy Friends: Ali, Murray and Niklas. While we ended up taking our
own paths, I am happy to have met you through this programme and appreciate all
the time we have spend together since.

Tjeerd, who reminded me to enjoy the process and kept supporting me in my
highest doubts and insecurities.

Of course, I want to thank all my friends who made my time in Gothenburg so
incredibly special, for all the trips, the hikes around the islands, the silent hobby
days, evenings playing games, pubquizzes, midnight swims, and the late night din-
ner conversations.

Thanks to my family: Emma, Casper, Rozemarijn and Roemer. Your phone calls,
support, visits to Gothenburg and ever listening ears meant more to me than I can
express on paper.

Finally, I want to thank Johanna, Jo. For two years filled with weird e-mails to
our teachers, late night dance parties, celebrating the end of every deadline, exten-
sive watching of Desperate Housewives, long days of studying together, trips with
our friends, getting our logic tattoos, launching our Youtube coaster channel with
Niklas, the Jo & Jo Newsletter, and so much more. Living together made the whole
studying-from-home covid life so much more fun, and you were truly a highlight of
my time living in Gothenburg. As our best friend Taylor Swift would say: “I had the
time of my life fighting dragons with you”.

1Babies is the nickname given to the first year students, there were no actual babies harmed in the
making of this thesis

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Description Logic . 1

1.1.1 Variations . 4
1.1.2 Proof Theory . 5

1.2 Hofmann’s Sequent Calculus . 7
1.3 Structure and goal . 10

2 Frame-based Description Languages 12
2.1 Introduction . 12
2.2 Sequent Calculus . 13
2.3 Soundness . 15
2.4 Completeness . 21

3 Attribute Languages 24
3.1 Introduction . 24
3.2 AL′ . 25

3.2.1 Soundness . 26
3.2.2 Completeness . 29

3.3 ALE ′ . 31
3.3.1 Soundness . 31
3.3.2 Completeness . 33

4 Quantifier-free Description Logic 35
4.1 Introduction . 35
4.2 Soundness . 36
4.3 Completeness . 43

5 Explicit Fixpoints 44
5.1 Introduction . 44
5.2 Intuition . 45
5.3 The Logic . 48

v

6 Discussion 52
6.1 Problems in ALC . 52

6.1.1 Disjunction . 52
6.1.2 Negation . 54

6.2 Summary . 55
6.3 Future research . 55

Bibliography 57

1

Chapter 1

Introduction

In the development of intelligent systems using a large amount of data, there is a
high need for logics that are not only decidable but have efficient reasoning algo-
rithms. Description Logic (DL) is a family of knowledge representation languages,
developed exactly with this goal. DLs have a wide range of real-world applications,
all in category of data information storage or reasoning. One can think of databases,
software information systems, but mostly it is used as an ontology: classification and
explanation of concepts. As an ontology, DLs can be applied to any field. We can
consider an ontology describing the roles within a university, or within the biomed-
ical field, astronomy, software development, and many more.

Unlike other semantic networks or frames, DLs use logical symbols and expres-
sions, giving us the tools to reason in a structured and well-understood way. This
property makes it interesting to study the proof theory of DL. In this thesis, we apply
the well-known Gentzen sequent calculus to a family of DLs.

Before getting into the details, we first paint a picture of the field. We start an
introduction to basic notions and formalisms, and give an overview of general proof
techniques. Then we introduce the sequent calculus we build on for the rest of the
thesis.

1.1 Description Logic

For the introduction to the field of Description Logic, the book [4] has been used as
the main source of information.

As mentioned, we refer to DLs as a family of knowledge representation lan-
guages. Before moving on to the formal notation, let us give an intuition behind
the idea. Consider the setting of a university. A university consists of teachers, stu-
dents, courses, faculties, study programs, etc. In DL, we call these the ‘concepts’ or
‘concept names’. These concepts are related to each other using so-called roles: a
teacher teaches a course, a student is enrolled in a study program, etc. All these con-
cepts are defined and collected in what we call a knowledge base. There are different
ways to describe concepts:

1. By giving the literal definition of a concept: ‘a teacher is a person who teaches
a course’

Chapter 1. Introduction 2

2. By describing the context of a concept: ‘a teacher is a subset of people working
in a university and a subset of not being a student’

3. By asserting that individual names stand for instances of concepts: ‘Alice is a
teacher’

4. By relating individual names by roles: ‘Alice teaches Set Theory’

We make a division between the way to describe the first two points of this list
and the last two points. Points 1 and 2 are considered to be part of the terminology
and concepts of this form are collected together in the TBox, while 3 and 4 are the
assertional part of the knowledge base and concepts of this form are put in the ABox.
Let us now move on to the formal part.

The definition of concepts is given in the TBox T of the knowledge base. These
definitions are of the form C ⊑ D and C = D. C is a concept name, and each concept
name is defined by a concept description, in this case D, given by the following
grammar:

B ::=C (propositional concept)

| ⊤ (universal concept)

| ⊥ (bottom concept)

| A ⊓ A (intersection, or conjunction)

| A ⊔ A (union, or disjunction)

| ¬A (negation)

| ∃r.A (existential restriction)

| ∀r.A (value restriction)

Thus, in the definition Teacher = Person⊓∃teaches.Course, the values Teacher, Person
and Course are concept names and Person⊓∃teaches.Course is a concept description.
Except propositional concept names, all concept names are given a concept descrip-
tion. We will often refer to concept names simply as ‘concepts’.

This is the syntax for the DL called ALC: attribute language with complements. A
semantics for an ALC concept description is an interpretation I mapping concept
names and descriptions to subsets of a nonempty domain DI :

1. I(⊤) = DI

2. I(⊥) = ∅

3. I(C ⊓ D) = I(C) ∩ I(D)

4. I(C ⊔ D) = I(C) ∪ I(D)

5. I(¬C) = DI − I(C)

6. I(∃r.C) = {d ∈ DI | there is an e ∈ DI with (d, e) ∈ I(r) and e ∈ I(C)}

Chapter 1. Introduction 3

7. I(∀r.C) = {d ∈ DI | for all e ∈ DI if (d, e) ∈ I(r) then e ∈ I(C)}

We say that a concept C is satisfiable with respect to a TBox T , if there is an interpreta-
tion I of T such that there is an element a ∈ DI and a ∈ I(C). We write T ⊨ E⊑ F,
if any interpretation I for a TBox T gives us I(E) ⊆ I(F).

The elements of an ABox A are of the form a : B, where a is an instance of B. For
example, Alice : Teacher asserts that Alice is a teacher. Expressions in A can also be
of the form (Alice, Proo f Theory) : teaches expressing that Alice teaches Proo f Theory.
Finally, the knowledge base K is defined as the pair K = (T ,A).

Although being developed independently of each other, in this interpretation, it
becomes clear that there is a relationship between DL and modal logic. As described
in [4], there is a direct translation f from concept descriptions in the DL ALC to
modal logic. Since we consider multiple types of relations in DL, such as teaches,
attends, we want a modal logic where the diamonds and boxes are labeled. There-
fore, f maps concept description in ALC to formulas in the modal logic Km.

1. f (A) = pA for concept names A,
and propositional letters p,

2. f (C ⊓ D) = f (C) ∧ f (D),

3. f (C ⊔ D) = f (C) ∨ f (D),

4. f (¬C) = ¬ f (C),

5. f (∀r.C) = □r f (C),

6. f (∃r.C) = ♢r f (C)

However, one of the aspects that separate DL from modal logic is the notion of
TBoxes and ABoxes, providing a convenient syntax.

An interpretation for formulas in modal logic is represented in Kripke models,
and we can relate our TBox and ABox to such a model. Regarding the TBox T , we
say that for each formula C ⊑ D ∈ T , the formula ¬ f (C) ∨ f (D) must hold in each
world of our Kripke structure. We express this with the universal modality U. This
allows [6] to prove the following theorem:

Theorem 1.1.1. Let T be an ALC TBox and E, F ALC concepts. Then:

• F is satisfiable iff f (F) is satisfiable.

• F is satisfiable with respect to T iff
∧

C ⊑ D∈T [U](f (C) → f (D)) ∧ f (F) is satis-
fiable

• T ⊨ E⊑ F iff
∧

C ⊑ D∈T [U](f (C) → f (D)) → [U](f (E) → f (F)) is valid

Like TBoxes, we create a correspondence for ABoxes with the logic Km, but need
the extension with nominals denoted by the operator @. As explained in [9], this ex-
tension is added to modal logic to obtain hybrid logic with the goal to express that
certain statements are only true in exactly one possible world. As an example, con-
sider the statement: “it is sunny on 21 May 2022”. In this case we want the statement
“it is sunny”, to be true exactly in the world where “21 May 2022” is true. Thus, in
hybrid logic, we say the formula @aϕ holds if and only if in the one world where

Chapter 1. Introduction 4

a holds, ϕ holds. In this case, a stands for “21 May 2022" and ϕ for “it is sunny”.
Thus, an assertion of the form a : C corresponds to the modal formula @a f (C), and
(a, b) : r to @a♢rb.

In conclusion, there is a way of translating DLs to Km, so why not just focus on the
proof theory of modal logics instead? Although this might work for logic ALC, the
beauty of DL is that there are many variations with all very different applications,
and not all of them translate directly to modal logic. We now discuss a few variations
and high-light which ones we consider in this thesis.

1.1.1 Variations

We start by introducing the so-called light-weight DLs, obtained by removing certain
logical connectives. One of the minimal description logics that still has applications
in various fields, such as life sciences, is the description logic EL short for existential
language. The syntax of this logic is the following:

B ::=C (propositional concept)

|⊤ (universal concept)

|B ⊓ B (intersection, or conjunction of two concepts)

|∃r.B (value restriction)

There are many more small logics to consider: we can replace ∃r. by ∀r., and obtain
the logic FL0. We can add an atomic negation, or ⊥. Since all these logics are
very small, but still expressible enough to be useful in certain ontologies, they are
interesting to study.

In this thesis, we focus on light-weight DLs that contain certain combinations of
connectives.

Aside from the number of connectives, there are other types of extensions. In [7],
the option is explored to create a “super logic”, in particular the logic µALC I O f a,
featuring the following extensions: fixpoints, inverse roles, nominals and function-
ality assertions over atomic roles.

The extension I stands for inverse roles and allows us to invert the roles in our
TBox: instead of adding isChildO f , we take the inverse of the isParentO f relation.
Then, the extension O stands for the addition of nominals and allows us to use ABox
names, the a in a : C, within concept descriptions:

CoursesO f Bob = Course⊓∃taughtBy.{Bob}

Then f a stands for functional assertions, where the atomic roles r are functional.
This means an ABox can not contain both (a, b) : r and (a, c) : r, if b and c refer to
two different elements of the domain, i.e. I(b) ̸= I(c).

The extension we consider in this thesis is the fixpoint extension, represented by
the µ. Fixpoints can be incorporated by allowing for cyclic definitions in the TBox,

Chapter 1. Introduction 5

e.g.:

Human = Mammal ⊓∃hasParent.⊤⊓∀hasParent.Human

While certain combinations of these extensions are still decidable, the “super
logic” µALC I O f a is not. The battle of expressivity versus decidability is a common
problem within the world of Description Logics.

1.1.2 Proof Theory

We now dive into the proof theory of Description Logic and sketch the work that
has been done. The common reasoning problems that are considered in this proof
theory are the following.

Let K = (T ,A) be an ALC knowledge base, and C, D ALC concepts, and b an
individual name assertion. We say that

1. C is satisfiable with respect to T if there exists an interpretation I of T and
some d ∈ DI with d ∈ I(C);

2. C is subsumed by D with respect to T , written T ⊨ C ⊑ D, if I(C) ⊆ I(D) for
every interpretation I of T ;

3. C and D are equivalent with respect to T , written T ⊨ C = D, if I(C) = I(D)

for every interpretation I of T ;

4. K is consistent if there exists an interpretation of K;

5. b is an instance of C with respect to K, written K ⊨ b : C, if I(b) ∈ I(C) for
every interpretation I of K.

A sequent calculus would primarily solve item 2 on this list, where the sequents
proved are of the form C ⊑ D, the soundness would give us I(C) ⊆ I(D). The
equivalence described in point 3 would be achieved by proving C ⊑ D and D ⊑C.
Before we dive into these, let us focus on other algorithms often used in DL.

As mentioned in the previous section, there exist expressive DLs as well as light-
weight DLs, both of which benefit from different proof calculi. For the more ex-
pressive DLs, we introduce a tableau-based algorithm that checks knowledge base
consistency, and for the light-weight DLs we describe a consequence-based reason-
ing algorithm.

First, we describe the tableau algorithm. In the first step, the ABox A is saturated
based on the connectives of the concept descriptions in it. For example, if a : C ⊓ D ∈
A, then the set {a : C, a : D} is added to A, etc. This procedure continues until
all connectives have been considered, or until a clash is found, i.e., a subset of the
form {a : B, a : ¬B}. While this algorithm essentially checks the consistency of the
knowledge base, it can be used for other reasoning problems. Take, for example, the
subsumption problem, point 2: C ⊑ D. Then, a concept C is subsumed by a concept

Chapter 1. Introduction 6

D with respect to K iff (T ,A∪{x : C ⊓ ¬D}) is not consistent (where x is new). An
overview of tableaux for different extensions of ALC can be found in [5].

The above tableau algorithm works because it looks for a clash. However, we
have seen the description logic EL, that contains neither ¬ nor ⊥ making it impos-
sible to derive a clash. Therefore, knowledge base consistency is an entirely trivial
problem. Instead, one considers consequence-based reasoning for smaller, negation-
free description logics.

The goal of the algorithm is simply to generate consequences, i.e., sequents of the
form A⊑ B. The first step is to normalize the TBox, so that we only have sequents of
the following form:

A ⊑ B, A1 ⊓ A2 ⊑ B, A ⊑ ∃r.B, ∃r.A ⊑ B

where A, A1, A2, B are propositional concept names or ⊤, and r is a role name. This
is also the form of T -sequent. Then, we have rules that only apply to sequents of
that form, which are called classification rules:

A ⊑ A CR1 A ⊑ ⊤ CR2
A1 ⊑ A2 A2 ⊑ A3

A1 ⊑ A3
CR3

A ⊑ A1 A ⊑ A2 A1 ⊓ A2 ⊑ B
A ⊑ B CR4

A ⊑ ∃r.A1 A1 ⊑ B1 ∃r.B1 ⊑ B
A ⊑ B CR5

The soundness of completeness of these rules are stated below and the proofs of
these can be found in [6].

Lemma 1.1.2 (Soundness). If all the elements of a TBox T ’ follow from T and the T -
sequents above the line of one of the inference rules belong to T ’, then the T -sequent
below the line also follows from T .

Lemma 1.1.3 (Completeness). Let T be a general EL TBox in normal form and T ∗

the saturated TBox obtained by exhaustive application of the inference rules. Then
T ⊨ A⊑ B implies A⊑ B ∈ T ∗.

Clearly, this algorithm is different from the tableau algorithm described before,
which is a refutation procedure instead of a generation procedure. One drawback of
the latter algorithm is that proof search is very difficult since all the non-axiomatic
rules cut one or multiple formulas to get the desired sequent.

A Gentzen-like sequent calculus would benefit both types of logic. Multiple se-
quent calculi have been developed for DL. We focus on the work carried out by [12].

Chapter 1. Introduction 7

In this work, a sequent calculus for the logic EL is introduced in which the TBox is
allowed to be cyclic.

1.2 Hofmann’s Sequent Calculus

In this section, we describe the sequent calculus introduced in [12]. Concept de-
scriptions are given by formulas ϕ, and the TBox is a list of equations of the form
X = ϕ(X). Given a TBox T , the syntax is the following:

ϕ ::= X | P | ϕ⊓ψ | ∃r.ϕ

Above, P ranges over a finite set of propositional concept names used in T and r
over a finite set of defined role names. Infinite sets are not considered and left out of
this thesis.

For the equations X = ϕ(X) of a given TBox T , we have that each variable occurs
at most once on the left hand side of an equation. The formula ϕ(X) may depend on
X, allowing for circular definitions, and it may involve variables appearing as some
left hand side in T .

The corresponding interpretation I is a function from formulas to subsets of a
domain DI , such that:

1. I(X) = I(ϕ(X))

2. I(ϕ⊓ψ) = I(ϕ) ∩ I(ψ)

3. I(∃r.ϕ) = {x | ∃y ∈ I(ϕ). I(r)(x, y)}

We refer to this interpretation as the descriptive semantics, and we write ϕ ⊨des ψ if
I(ϕ) ⊆ I(ψ) for every interpretation I . Let us now move on to the calculus.

The sequents are of the form ϕ⊑ψ, where ⊑ is a syntactic operator. We want a
system such that the judgement ϕ⊑ψ is derivable if and only if ϕ ⊨des ψ. The rules
are as follows:

ϕ ⊑ ϕ Ax
ϕ ⊑ ρ

ϕ ⊓ ψ ⊑ ρ
⊓ L1

ψ ⊑ ρ

ϕ ⊓ ψ ⊑ ρ
⊓ L2

ϕ ⊑ ψ ϕ ⊑ ρ

ϕ ⊑ ψ ⊓ ρ ⊓ R
ϕ ⊑ ψ

∃r.ϕ ⊑ ∃r.ψ ∃

ϕ(X) ⊑ ψ

X ⊑ ψ
De f L

ψ ⊑ ϕ(X)

ψ ⊑ X
De f R

Using this calculus, Hofmann goes on to prove soundness and completeness with
respect to the descriptive semantics. The proof is relatively straightforward, using

Chapter 1. Introduction 8

induction on the rules for soundness, and creating a canonical model for the com-
pleteness proof.

However, there is a slight problem regarding this interpretation, and that is caused
by the circular TBoxes. We sketch this problem with an example: X = P⊓∃r.X, then
given an interpretation of propositional concept name P, the assignment of I(X)

is not unique. A possible assignment is I(X) = ∅, since we then have I(X) =

I(P)∩ I(∃r.X) for any assignment of I(P). Another possible interpretation for X is
an isolated circle, e.g. for an assignment I(X) = {a, b, c, d} ⊆ I(P) ⊆ DI , we have
I(r) = {(a, b), (b, c), (c, d), (d, a)}. Furthermore, I(X) can issue an infinite path,
where I(X) = {ai | i ∈ N} ⊆ I(P) ⊆ DI , and I(r)(x, y) = {(a0, a1), (a1, a2),
(a2, a3), . . .}. In order to assign a unique assignment to a circular definition in the
TBox, Hofmann considers greatest fixpoint semantics.

Definition 1.2.1. An interpretation of a TBox under greatest fixpoint semantics is an
interpretation I which has the further property that whenever J is a function map-
ping formulas over the TBox to subsets of DI in such a way that:

1. J (P) = I(P)

2. J (ϕ⊓ψ) = J (ϕ) ∩ J (ψ)

3. J (X) ⊆ J (ϕ(X))

4. J (∃r.ϕ) = {x | ∃y ∈ J (ϕ). I(r)(x, y)}

then J (ϕ) ⊆ I(ϕ) for all ϕ.

We write ϕ ⊨g f p ψ to mean that I(ϕ) ⊆ I(ψ) for all greatest fixpoint interpreta-
tions I .

The first two points are fairly straightforward. We only want to consider in-
terpretations with the same assignment for propositional concept names, and the
conjunction of two formulas is still the intersection of the interpretations of both for-
mulas. For point 3, we consider only the functions such that J (X) ⊆ J (ϕ(X)), since
we need all functions J to be fixpoint functions. Point 4 uses the interpretation I to
interpret the role, instead of J . The reason is that we only compare interpretations
where the interpretation of the roles are the same.

Given a fixed domain and an assignment to the propositional concept names
and role names, the greatest fixpoint interpretation gives us a unique interpreta-
tion for a TBox T with circular definitions. Considering our previous example,
X = P⊓∃r.X, the greatest fixpoint interpretation is the option where I(X) issues
an infinite path. The interpretation is now uniquely determined by the values as-
signed to the propositional concept names. Furthermore, for a TBox containing the
equations: X = P⊓∃r.X and Y = P⊓∃r.Y, X ⊨g f p Y is true while X ⊨des Y is not.

There is one thing we still need to fix in our system. The natural way to prove
the judgement X ⊑Y would lead to an infinite proof tree, as seen in the following
example.

Chapter 1. Introduction 9

....
X ⊑Y

∃r.X ⊑∃r.Y ∃

P⊓∃r.X ⊑∃r.Y
⊓ L2

P⊑ P Ax

P⊓∃r.X ⊑ P
⊓ L1

P⊓∃r.X ⊑ P⊓∃r.Y ⊓ R

X ⊑ P⊓∃r.Y
De f L

X ⊑Y
De f R

In order to avoid this, [12] defines a family of relations ⊑n for n ∈ N:

1. ϕ⊑0 ψ for all ϕ, ψ

2. ϕ⊑n ϕ for all n ∈ N

3. The relations ⊑n are closed under the rules ⊓ L1, ⊓ L2, ⊓ R, ∀ and De f L

4. If ϕ⊑n ψ(X) then ϕ⊑n+1 X.

We write ϕ⊑∞ ψ to mean that ϕ⊑n ψ holds for all n ∈ N. We note that whenever
ϕ⊑n ψ and n > m then ϕ⊑m ψ.

The intuition behind the family of relations ⊑n is based on the searching proce-
dure for the greatest fixpoint, i.e. a solution to the equation I(X) = I(ϕ(X)). In
this procedure, we start by evaluating whether DI is a fixpoint and check whether
DI = I(ϕ(X 7→ DI). This starting point corresponds to the rule start, since ϕ⊑0 ψ

holds for all ϕ, ψ, and I(ϕ) ⊆ DI holds for all ϕ. If DI is not a fixpoint, if DI ⊃
I(ϕ(X 7→ DI), we try the output of ϕ(X 7→ DI) and check whether this is a fix-
point. Then, ϕ⊑∞ X corresponds to the finding of a fixpoint such that I(ϕ) ⊆ I(X)

and I(ϕ) ⊆ I(ψ(X)), and I(X) = I(ϕ(X)). If we can not find a fixpoint, then there
is an n such that ϕ⊑n X, but not ϕ⊑n+1 X. We continue explaining this intuition in
depth in chapter 5.

Incorporating this family of relations in our proof system gives us the following.

ϕ⊑0 ψ
start

ϕ ⊑n ϕ Ax
ϕ ⊑n ρ

ϕ ⊓ ψ ⊑n ρ
⊓ L1

ψ ⊑n ρ

ϕ ⊓ ψ ⊑n ρ
⊓ L2

ϕ ⊑n ψ ϕ ⊑n ρ

ϕ ⊑n ψ ⊓ ρ ⊓ R
ϕ ⊑n ψ

∃r.ϕ ⊑n ∃r.ψ ∃

ϕ(X) ⊑n ψ

X ⊑n ψ
De f L

ψ ⊑n ϕ(X)

ψ ⊑n+1 X
De f R

In this thesis, we will often write ϕ⊑n ψ to mean “there is a proof for the judgement
ϕ⊑n ψ”.

Chapter 1. Introduction 10

To show that it is not trivial that ϕ⊑n ψ has to hold for every n ∈ N, consider the
following example. Take X = P⊓∃r.X and Y = P⊓∃r.(P⊓∃r.P). Then, there is a
proof Y ⊑3 X, but not for Y ⊑4 X.

P⊑2 P Ax

P⊓∃r.(P⊓∃r.P)⊑2 P
⊓ L1

P⊑1 P Ax

P⊓∃r.P⊑1 P
⊓ L1

P⊑0 P⊓∃r.X start

P⊑1 X
De f R

∃r.P⊑1 ∃r.X ∃

P⊓∃r.P⊑1 ∃r.X
⊓ L2

P⊓∃r.P⊑1 P⊓∃r.X ⊓ R

P⊓∃r.P⊑2 X
De f R

∃r.(P⊓∃r.P)⊑2 ∃r.X ∃

P⊓∃r.(P⊓∃r.P)⊑2 ∃r.X
⊓ L2

P⊓∃r.(P⊓∃r.P)⊑2 P⊓∃r.X ⊓ R

Y ⊑2 P⊓∃r.X
De f L

Y ⊑3 X
De f R

We sketch one more example to show that the infinite regress mentioned before is
prevented. Consider X = P⊓∃r.X and Y = P⊓∃r.Y.

X ⊑0 P⊓∃r.Y start

X ⊑1 Y
De f R

∃r.X ⊑1 ∃r.Y ∃

P⊓∃r.X ⊑1 ∃r.Y
⊓ L2

P⊑1 P Ax

P⊓∃r.X ⊑1 P
⊓ L1

P⊓∃r.X ⊑1 P⊓∃r.Y ⊓ R

X ⊑1 P⊓∃r.Y
De f L

X ⊑2 Y
De f R

We proved X ⊑n Y for n = 2, but we could have continued this proof for any n.
In the rest of the paper, [12] continues to prove the soundness and completeness

of the sequent calculus for EL with respect to the greatest fixpoint semantics. He
then exchanges the existential quantifier with the universal quantifier and proves
soundness and completeness of the introduced system with respect to descriptive
semantics. He ends his work with a sketch of the full system for ALC. It is stated
that ϕ⊑∞ ψ iff ϕ ⊨g f p ψ, but this result is not proven.

1.3 Structure and goal

The goal of this thesis is to take the framework and strategy of [12] and apply it to
light-weight DLs including circular definitions. We start with the family of frame-
based description languages in chapter 2. In this chapter, we exchange the existential
quantifier in the logic of [12] for the universal quantifier. The ideas in the proofs for
this operator are inspired by Hofmann’s soundness and completeness proofs for this
logic with respect to the descriptive semantics but extended to work for the greatest

Chapter 1. Introduction 11

fixpoint interpretation. This is also the first time that we present the strategy and all
components needed for the proofs in detail.

Then, in chapter 3, we continue to do the same for the family of attribute lan-
guages. The operators atomic negation, ∃r.⊤ and ⊥ are added to obtain the lan-
guage AL. Only the operator ⊥ requires a new rule, which we base on existing
rules of sequent calculi, as presented, for example, in [13]. Then, we add the full
existential quantification for ALE . Since the two quantifiers are not interdefinable
in these logics, we define the semantics in two separate relations.

In chapter 4, the disjunction ⊔ is considered for a small logic only containing
conjunction, ⊥ and ⊤. We see that soundness and completeness can not be proved
in the same way, and we need a new strategy. For this, we use some basic fixpoint
ideas as presented in [11].

In chapter 5, we extend Hofmann’s framework to a new framework including
both greatest and least fixpoint operators, and we argue the benefits of such a calcu-
lus. In this chapter, we present the framework, but do not prove anything rigorous.
We end with a discussion on the drawbacks of Hofmann’s strategy for the language
ALC.

12

Chapter 2

Frame-based Description
Languages

2.1 Introduction

In this chapter we apply the framework as introduced in [12], to the description logic
FL0. The logic is built with the following constructs:

ϕ ::= ⊤ | P | X | ϕ⊓ ϕ | ∀r.ϕ

As in any logic we describe in this thesis, we allow circular definitions in our TBox,
and the formulas of the TBox are of the form X = ϕ(X). We do not consider the
case where two or more definitions depend on each other, i.e., X = ϕ(X, Y) and
Y = ψ(X, Y).

For the interpretation, we give the following definition:

Definition 2.1.1 (Interpretation). An interpretation I for the logic FL0 is a function
mapping formulas to subsets of a non-empty domain DI , according to the following
rules:

1. I(⊤) = DI

2. I(X) = I(ϕ(X))

3. I(ϕ⊓ψ) = I(ϕ) ∩ I(ψ)

4. I(∀r.ϕ) = {x ∈ DI | ∀y. I(r)(x, y) → y ∈ I(ϕ)}

The logic FL0 is the base of the so-called ‘frame-based languages’ in description
logic, forming the ground for FL and FL−. This is a family of logics not allowing
any form of negation or bottom. FL− is FL0 extended with ∃r.⊤, making it possible
to ensure for a certain concept to have a successor. Then FL is again an extension of
FL−, where we allow role restrictions. A description of these can be found in [8].

The goal of this chapter is to introduce a sequent calculus for the logic FL0 and
prove that it is sound and complete with respect to the greatest fixpoint semantics.

Chapter 2. Frame-based Description Languages 13

2.2 Sequent Calculus

In contrast to the chapter where we introduced Hofmann’s framework, we now in-
clude the family of relations ⊑n immediately in the sequent calculus.

Γ, ϕ⊑n ϕ
Ax Γ⊑n ⊤

Ax⊤ Γ⊑0 ϕ
start

Γ, ϕ1, ϕ2 ⊑n ψ

Γ, ϕ1 ⊓ ϕ2 ⊑n ψ
⊓ L

Γ⊑n ψ1 Γ⊑n ψ2

Γ⊑n ψ1 ⊓ψ2
⊓ R

Γ, ϕ(X)⊑n ψ

Γ, X ⊑n ψ
De f L

Γ⊑n ψ(X)

Γ⊑n+1 X
De f R

Γ⊑n ϕ

Λ, ∀r.Γ⊑n ∀r.ϕ ∀

Let us consider a few notable aspects of this system. Firstly, we have (finite) sets
of formulas, noted as Γ, on the left of the ⊑n symbol, and singular formulas on the
right. This is needed for the rule ⊓ L. In [12], the rules for ⊓ L are split into the
following two rules:

ϕ1 ⊑n ψ

ϕ1 ⊓ ϕ2 ⊑n ψ
⊓ L1

ϕ2 ⊑n ψ

ϕ1 ⊓ ϕ2 ⊑n ψ
⊓ L2

The purpose is to allow distributivity of the universal quantifier over the conjunc-
tion. In our presented proof system, we can prove both ∀r.(ϕ⊓ψ)⊑n ∀r.ϕ⊓∀r.ψ for
every n, as well as ∀r.ϕ⊓∀r.ψ⊑n ∀r.(ϕ⊓ψ).

ϕ, ψ⊑n ϕ Ax

ϕ⊓ψ⊑n ϕ ⊓ L

∀r.(ϕ⊓ψ)⊑n ∀r.ϕ ∀

ϕ, ψ⊑n ψ Ax

ϕ⊓ψ⊑n ψ ⊓ L

∀r.(ϕ⊓ψ)⊑n ∀r.ψ ∀

∀r.(ϕ⊓ψ)⊑n ∀r.ϕ⊓∀r.ψ
⊓ R

ϕ, ψ⊑n ϕ Ax ϕ, ψ⊑n ψ Ax

ϕ, ψ⊑n ϕ⊓ψ ⊓ R

∀r.ϕ, ∀r.ψ⊑n ∀r.(ϕ⊓ψ)
∀

∀r.ϕ⊓∀r.ψ⊑n ∀r.(ϕ⊓ψ)
⊓ L

For the interpretation of a set of formulas Γ, appearing on the left of ⊑n, we write
I⊓(Γ) =

⋂{I(γ) | γ ∈ Γ}.
Furthermore, this calculus gives us the ability to weaken a judgement Γ⊑n ψ to

Γ, ϕ⊑n ψ. Let us prove this:

Lemma 2.2.1 (Weakening). If Γ⊑n ψ is provable, then Γ, ϕ⊑n ψ is.

Proof. We prove this by induction on the length of the derivation Γ⊑n ψ. The base
case is a derivation where only one rule has been used before weakening: start, Ax
or Ax⊤.

• start:

Γ⊑0 ψ
start

Then the weakened judgement Γ, ϕ⊑0 ψ is just another instance of start.

Chapter 2. Frame-based Description Languages 14

• Ax:

Γ′, ψ⊑n ψ
Ax

Then, the result we want to derive is another instance of Ax: Γ′, ϕ, ψ⊑n ψ.

Γ′, ϕ, ψ⊑n ψ
Ax

• Ax⊤:

Γ⊑n ⊤
Ax⊤

Again, the sequent we want to derive is an instance of Ax⊤:

Γ, ϕ⊑n ⊤
Ax⊤

For every inductive step, we can just assume we can weaken the premises and there-
fore apply the rule to obtain the weakened conclusion. The only interesting case is
when the last rule used is the ∀-rule:

• ∀:

Γ′ ⊑n ψ

Λ, ∀r.Γ′ ⊑n ∀r.ψ ∀

Since we can do this weakening within the ∀ rule, we can just add the formula
ϕ there:

Γ′ ⊑n ψ

Λ, ϕ, ∀r.Γ′ ⊑n ∀r.ψ ∀

We refer to this lemma in derivations in the following way:

Γ⊑n ψ

Γ, ϕ⊑n ψ
weakening

Now let us move on to the greatest fixpoint semantics.

Definition 2.2.2 (Greatest fixpoint semantics). An interpretation under the greatest
fixpoint semantics for FL0 is an interpretation I which has the further property that
whenever J is a function mapping the formulas over the TBox to subsets of the
domain DI in such a way that:

1. J (P) = I(P)

2. J (⊤) = DI

Chapter 2. Frame-based Description Languages 15

3. J (ϕ⊓ψ) = J (ϕ) ∩ J (ψ)

4. J (X) ⊆ J (ϕ(X))

5. J (∀r.ϕ) = {x | ∀y. I(r)(x, y) → y ∈ J (ϕ)}

then J (ϕ) ⊆ I(ϕ) for all ϕ.

Further along, in the soundness and completeness proofs, we refer to these points
1-5 as the conditions for the interpretation that need to be fulfilled. Let us now start
the soundness proof.

2.3 Soundness

First we introduce the following definition:

Definition 2.3.1. We write Γ ⊩ ψ to denote that the judgement Γ⊑n ψ can be derived
with the rules Ax, Ax⊤, ⊓ L and De f L for every n ∈ N.

Since we have a derivation only using the axioms and the left rules, we can easily
prove this adjusted version of the cut rule, that we call Partial Cut.

Lemma 2.3.2 (Partial Cut). If Γ ⊩ ψ and ∆, ψ⊑n ρ, then Γ, ∆⊑n ρ for all n ∈ N.

Proof. We do induction on the length of the derivation Γ ⊩ ψ. For the base case, we
assume that the last rule used was Ax or Ax⊤.

1. Take Ax as the last rule used:

We assume both the judgements Γ′, ψ ⊩ ψ and ∆, ψ⊑n ρ. Then we can just
weaken the latter to get our wanted result: Γ′, ∆, ψ⊑n ρ.

2. Take Ax⊤ as the last rule used:

We assume Γ ⊩ ⊤ and ∆,⊤⊑n ρ. In this case, we need to consider two cases:
either ∆,⊤⊑n ρ is derived such that ⊤ is principal, or it is not.

(a) If ⊤ is principal, then the last rule used is Ax, and ρ = ⊤. In this case, we
can obtain our desired sequent by weakening Γ ⊩ ⊤ to Γ, ∆⊑n ⊤.

(b) If ⊤ is not principal, then let us say the last rule used was R such that:

∆′,⊤⊑n ρ′

∆,⊤⊑n ρ
R

We can then apply the lemma to ∆′,⊤⊑n ρ′ to obtain Γ, ∆′ ⊑n ρ′, and ap-
ply R to obtain: Γ, ∆⊑n ρ.

For the inductive step, we assume that the last rule used is ⊓ L or De f L, and we
assume that we can cut the formula ψ before applying the rules ⊓ L or De f L.

Chapter 2. Frame-based Description Languages 16

3. Take ⊓ L as the last rule used:

From the induction hypothesis and the assumption ∆, ψ⊑n ρ, we have the
judgement Γ′, ∆, ϕ1, ϕ2 ⊑n ρ. Then by applying ⊓ L, we get the judgement:
Γ′, ∆, ϕ1 ⊓ ϕ2 ⊑n ρ.

4. Take De f L as the last rule used:

From the induction hypothesis and the derivation ∆, ϕ(X)⊑n ρ, we get the
judgement Γ′, ∆, ϕ(X)⊑n ρ. Then by applying De f L, we get the judgement:
Γ′, ∆, X ⊑n ρ

We now use this lemma in derivations as the following rule:

Γ ⊩ ψ ∆, ψ⊑n ρ

Γ, ∆⊑n ρ
pc

where pc stands for Partial Cut.
Before moving on to the next step, we explain the choice of the rules in the ⊩

operator. The problem lies mostly in the De f R rules. Let us assume that we do not
have a definition of ⊩, and just try to obtain admissibility of cut in our ⊑n operator.
For one of the cases, we assume the following derivation:

Γ⊑n ϕ(X)

Γ⊑n+1 X
De f R

ϕ(X)⊑n+1 ρ

X ⊑n+1 ρ
De f L

Γ⊑n+1 ρ
pc

We want to transform this to a derivation, where the rule pc is pushed higher in
the derivation. Using the fact that ϕ(X)⊑n+1 ρ implies ϕ(X)⊑n ρ, and the induction
hypothesis, we get:

Γ⊑n ϕ(X) ϕ(X)⊑n ρ

Γ⊑n ρ
pc

Thus, we lose our step of moving on to the next natural number by applying De f R.
We wanted to prove Γ⊑n+1 ρ, but we proved Γ⊑n ρ. It might still be possible to
admit a cut rule that includes De f R, but this requires a different solution, which we
leave out of this thesis.

Having defined this rule, we move on to the generation lemma. The generation
lemma is closely related to the well-known inversion lemma often mentioned in the
field of proof theory; see [13]. We use the results of this lemma in both the soundness
and the completeness proof.

Lemma 2.3.3 (Generation). Suppose n > 0:

1. Γ⊑n P iff Γ ⊩ P

Chapter 2. Frame-based Description Languages 17

2. Γ⊑n ⊤ iff Γ ⊩ ⊤

3. Γ⊑n ψ1 ⊓ψ2 iff Γ⊑n ψ1 and Γ⊑n ψ2

4. Γ⊑n+1 X iff Γ⊑n ϕ(X)

5. Γ⊑n ∀r.ϕ iff for the set ∆ of subformulas of the TBox, ∀r.ϕ, and Γ that contains
all formulas δ such that Γ ⊩ ∀r.δ, we have ∆⊑n ϕ.

Proof. We prove the left-to-right direction, noted by (a), by induction on the length
of the derivation. We show per case what the possible last rule used is. The right-to-
left direction, noted by (b), is proven by applying the appropriate sequent calculus
rule.

1. (a) Assume Γ⊑n P.

Since P is a propositional concept name and thus consists of no connec-
tives, Γ⊑n P is derived only using the rules Ax, ⊓ L or De f L, and thus
Γ ⊩ P.

(b) Assume Γ ⊩ P.

By definition of ⊩, there is a derivation of the judgement Γ⊑n P for all
n ∈ N.

2. (a) Assume Γ⊑n ⊤.

Then the last rule used is Ax, Ax⊤, ⊓ L, or De f L. All of these are in the
definition of ⊩, and therefore we get Γ ⊩ ⊤

(b) Assume Γ ⊩ ⊤.

By definition of ⊩, there is a derivation of the judgement Γ⊑n ⊤ for all
n ∈ N.

3. (a) Assume Γ⊑n ψ1 ⊓ψ2.

The last rule used is then either Ax, ⊓ L, De f L or ⊓ R.

• Ax:

Γ′, ψ1 ⊓ψ2 ⊑n ψ1 ⊓ψ2
Ax

We can derive the following:

Γ′, ψ1, ψ2 ⊑n ψ1
Ax

Γ′, ψ1 ⊓ψ2 ⊑n ψ1
⊓ L

Γ′, ψ1, ψ2 ⊑n ψ2
Ax

Γ′, ψ1 ⊓ψ2 ⊑n ψ2
⊓ L

• ⊓ L:

Γ′, ϕ1, ϕ2 ⊑n ψ1 ⊓ψ2

Γ′, ϕ1 ⊓ ϕ2 ⊑n ψ1 ⊓ψ2
⊓ L

Chapter 2. Frame-based Description Languages 18

By induction hypothesis, we obtain the judgement Γ′, ϕ1, ϕ2 ⊑n ψ1 and
Γ′, ϕ1, ϕ2 ⊑n ψ2. By applying the ⊓ L to both judgements, we get the
results we want.

• De f L:

Γ′, ϕ(X)⊑n ψ1 ⊓ψ2

Γ′, X ⊑n ψ1 ⊓ψ2
De f L

From the IH, we conclude Γ′, ϕ(X)⊑n ψ1 and Γ′, ϕ(X)⊑n ψ2. By ap-
plying De f L to both judgements, we derive the needed result.

• ⊓ R:

Γ⊑n ψ1 Γ⊑n ψ2

Γ⊑n ψ1 ⊓ψ2
⊓ R

Then, we obtain Γ⊑n ψ1 and Γ⊑n ψ2, from the antecedent of ⊓ R.

(b) Assume Γ⊑n ψ1 and Γ⊑n ψ2. Then, by simply applying the ⊓ R rule, we
obtain Γ⊑n ψ1 ⊓ψ2.

4. (a) Assume Γ⊑n+1 X.

The last rule used is Ax, ⊓ L, De f L or De f R.

• Ax:
We assume Γ′, X ⊑n+1 X. By our definition of the family of relations
⊑n we know Γ′, X ⊑n X. Then, we obtain the following derivation:

Γ′, X ⊩ X Ax
ψ(X)⊑n ψ(X)

Ax

X ⊑n ψ(X)
De f L

Γ′, X ⊑n ψ(X)
pc

• ⊓ L and De f L: these rules are clear since we can prove this by using
the induction hypothesis and applying the appropriate rule.

• De f R:

Γ⊑n ψ(X)

Γ⊑n+1 X
De f R

Then Γ⊑n ψ(X), since it was derived in our step before.

(b) Assume Γ⊑n ψ(X). Applying De f R gives us Γ⊑n+1 X.

5. (a) Assume Γ⊑n ∀r.ψ.

The last rule used is Ax, ⊓ L, De f L or ∀.

• Ax:
We assume Γ′, ∀r.ψ ⊩ ∀r.ψ. Then, it follows that ψ ∈ ∆. Since ψ⊑n ψ,
we obtain ∆⊑n ψ, by weakening.

Chapter 2. Frame-based Description Languages 19

• ⊓ L:

Γ′, ϕ1, ϕ2 ⊑n ∀r.ψ
Γ′, ϕ1 ⊓ ϕ2 ⊑n ∀r.ψ

⊓ L

By induction Γ′, ϕ1, ϕ2 ⊩ ∀r.δ for all δ ∈ ∆. By applying ⊓ L it follows
that Γ′, ϕ1 ⊓ ϕ2 ⊩ ∀r.δ, and ∆⊑n ψ still holds.

• De f L: we can use an argument identical to the case for ⊓ L.

• ∀:

Λ⊑n ψ

Γ′, ∀r.Λ⊑n ∀r.ψ ∀

It follows that Γ′, ∀r.Λ ⊩ ∀r.λ for all λ ∈ Λ. Thus Λ ⊆ ∆ and ∆⊑n ψ.

(b) For the right-to-left direction, assume ∆ = {δ0, . . . δk}. Then, we can ob-
tain our wanted result with the following derivation:

Γ ⊩ ∀r.δ0 . . . Γ ⊩ ∀r.δk

∆⊑n ψ

∀r.∆⊑n ∀r.ψ ∀

Γ⊑n ∀r.ψ
pc

Actually, we apply the pc rule separately to every instance of Γ ⊩ ∀r.δi,
but for simplicity, we write it down as above.

Before we move on to the soundness proof, there is one property we want to
prove about the ⊩ symbol, that will help us.

Lemma 2.3.4. If Γ ⊩ ψ then I⊓(Γ) ⊆ I(ψ) for any interpretation I .

Proof. This proof is done by induction on the length of the derivation Γ ⊩ ϕ. The last
rule used was either Ax, Ax⊤, ⊓ L or De f L.

• Assume the last rule used was Ax. Then Γ = Γ′ ∪ {ψ}, and it is evident that
I(ψ) ∩ I⊓(Γ′) ⊆ I(ψ).

• Assume the last rule used was Ax⊤. Since I(⊤) = DI , it follows that we have
I⊓(Γ) ⊆ I(⊤) for all Γ.

• Assume the last rule used was ⊓ L, then

Γ′, ϕ1 ⊩ ψ Γ′, ϕ2 ⊩ ψ

Γ′, ϕ1 ⊓ ϕ2 ⊩ ψ
⊓ L

By induction hypothesis we have I⊓(Γ′)∩I(ϕ1) ⊆ I(ψ) and I⊓(Γ′)∩I(ϕ2) ⊆
I(ψ). It follows that I⊓(Γ′) ∩ I(ϕ1) ∩ I(ϕ2) ⊆ I⊓(Γ′) ∩ I(ϕ1) ⊆ I(ψ).

Chapter 2. Frame-based Description Languages 20

• Assume the last rule used was De f L, and thus

Γ′, ϕ(X)⊑n ψ

Γ′, X ⊑n ψ
De f L

By IH, we know that I⊓(Γ′) ∩ I(ϕ(X)) ⊆ I(ψ). Since I(ϕ(X)) = I(X), we
get I⊓(Γ′) ∩ I(X) ⊆ I(ψ).

Now we have all the elements we need for the soundness proof.

Theorem 2.3.5 (Soundness). Γ⊑∞ ψ implies Γ ⊨g f p ψ.

Proof. We want to show that for all Γ and ϕ and any interpretation I under the
greatest fixpoint semantics we have:

Γ⊑∞ ϕ⇒I⊓(Γ) ⊆ I(ϕ)

This is equivalent to proving that for each ϕ and interpretation I one has

⋃
Γ⊑∞ ϕ

I⊓(Γ) ⊆ I(ϕ)

Our strategy is to take J (ϕ) :=
⋃

Γ⊑∞ ϕ I⊓(Γ), and show that J satisfies the condi-
tions in the greatest fixpoint definition. It is clear that I(ϕ) ⊆ J (ϕ), since ϕ⊑∞ ϕ for
any ϕ.

1. First, we need to prove that J (P) = I(P) for any interpretation I .

For the first direction, assume x ∈ J (P). Then according to the definition of
J , there is a Γ such that Γ⊑∞ P and x ∈ I⊓(Γ). Due to the generation lemma,
we get Γ ⊩ P, and thus x ∈ I(P) by lemma 2.3.4.

The other direction holds since I(P) ⊆ J (P).

2. Then, we need to show that J (⊤) = DI .

Take x ∈ J (⊤). Then x ∈ I⊓(Γ) for some Γ such that Γ⊑n ⊤. The generation
lemma gives us Γ ⊩ ⊤, and therefore x ∈ DI by lemma 2.3.4.

The other direction holds since I(⊤) ⊆ J (⊤).

3. Moving on to the condition J (ϕ1 ⊓ ϕ2) = J (ϕ1) ∩ J (ϕ2).

Take x ∈ J (ϕ1 ⊓ ϕ2), then there is a Γ such that x ∈ I⊓(Γ) and Γ⊑∞ ϕ1 ⊓ ϕ2.
Then the generation lemma gives us Γ⊑∞ ϕ1 and Γ⊑∞ ϕ2, and thus x ∈ J (ϕ1)

and J (ϕ2), by definition of J .

Now consider x ∈ J (ϕ1) ∩ J (ϕ2), and thus x ∈ J (ϕ1) and x ∈ J (ϕ2). There
are Γ1, Γ2 such that Γ1 ⊑n ϕ1 and Γ2 ⊑n ϕ2, and x ∈ I⊓(Γ1) and x ∈ I⊓(Γ2). We

Chapter 2. Frame-based Description Languages 21

can obtain the following derivation:

Γ1 ⊑n ϕ1

Γ1, Γ2 ⊑n ϕ1
weakening

Γ2 ⊑n ϕ2

Γ1, Γ2 ⊑n ϕ2
weakening

Γ1, Γ2 ⊑n ϕ1 ⊓ ϕ2
⊓ R

So since x ∈ I⊓(Γ1) ∩ I⊓(Γ2) = I⊓(Γ1, Γ2), we have x ∈ J (ϕ1 ⊓ ϕ2).

4. Next, we need to prove J (X) ⊆ J (ϕ(X)).

Take x ∈ J (X), then there is a Γ such that x ∈ I(Γ) and Γ⊑∞ X. By the
generation lemma, we get Γ⊑∞ ϕ(X), and thus x ∈ J (ϕ(X)).

5. For the next case, we need to prove that J (∀r.ϕ) = {x | ∀y ∈ DI . I(r)(x, y) →
y ∈ J (ϕ)}.

First assume x ∈ J (∀r.ϕ), then we get our Γ such that Γ⊑∞ ∀r.ϕ, and x ∈
I⊓(Γ). Since Γ⊑∞ ∀r.ϕ, we know that for the set ∆ such that Γ ⊩ ∀r.δ for all
δ ∈ ∆, we have that ∆⊑∞ ϕ. Thus we know that x ∈ I(∀r.δ) for all δ ∈ ∆.
Consider y ∈ DI such that I(r)(x, y). Then we obtain y ∈ I(δ) for all δ ∈ ∆,
and thus y ∈ I⊓(∆), and by definition of J , y ∈ J (ϕ).

For the other direction, assume that if I(r)(x, y), then y ∈ J (ϕ). Then for each
y such that I(r)(x, y), we have y ∈ I⊓(Λ) for some Λ such that Λ⊑n ϕ. Then
x ∈ I(∀r.λ) for all λ ∈ Λ and thus x ∈ I⊓(∀r.Λ). Applying the ∀ rule on
Λ⊑∞ ϕ we get ∀r.Λ⊑∞ ∀r.ϕ. Then x ∈ J (∀r.ϕ), as desired.

We have proven soundness and can now directly move on to completeness.

2.4 Completeness

Theorem 2.4.1 (Completeness). If Γ ⊨g f p ψ, then Γ⊑∞ ψ

Proof. Our strategy to prove this theorem is the following. We assume Γ ⊨g f p ψ.
Then we create an interpretation I , such that I⊓(Γ) ⊆ I(ψ) implies Γ⊑∞ ψ and
prove that it is a greatest fixpoint interpretation. Because it is a greatest fixpoint
interpretation, we know that Γ ⊨g f p ψ implies that I⊓(Γ) ⊆ I(ψ). This gives us the
desired results.

Let us create the following interpretation I :

DI = finite sets of subformulas of the TBox T
I(ψ) = {Γ | Γ⊑∞ ψ}

I(r)(Γ, ∆) ↔ ∆ consists of all δ in the set

of subformulas of T for which Γ ⊩ ∀r.δ

Chapter 2. Frame-based Description Languages 22

Before continuing with the structure of the proof, it is important to note that the ∆
in I(r)(Γ, ∆) is always finite. The given TBox T is finite, and therefore the set of
subformulas of this TBox T is also finite.

Now, the proof consists of two elements:

(a) Show that I satisfies the conditions for the fixpoint interpretation

(b) Show that I is indeed a greatest fixpoint interpretation: J (ϕ) ⊆ I(ϕ) for all
J and all ϕ. This follows from proving that if Γ ∈ J (ϕ), then Γ⊑∞ ϕ.

1. Let us consider the case of ϕ = P

(a),(b) This case is trivial, since we consider only interpretations such that I(P) =
J (P).

2. Let us consider the case of ϕ = ⊤

(a),(b) Also trivial, since Γ⊑∞ ⊤ is an axiom, and thus J (⊤) = DI = I(⊤).

3. Let us consider the case of ϕ = ϕ1 ⊓ ϕ2

(a) We need to prove that I(ϕ1 ⊓ ϕ2) = I(ϕ1) ∩ I(ϕ2).

Take Γ ∈ I(ϕ1 ⊓ ϕ2), and therefore Γ⊑∞ ϕ1 ⊓ ϕ2. By the generation lemma,
we obtain Γ⊑∞ ϕ1 and Γ⊑∞ ϕ2. Thus, Γ ∈ I(ϕ1) and Γ ∈ I(ϕ2) and thus
Γ ∈ I(ϕ1) ∩ I(ϕ2).

For the other direction assume Γ ∈ I(ϕ1) and Γ ∈ I(ϕ2). Then, Γ⊑∞ ϕ1

and Γ⊑∞ ϕ2, giving us Γ⊑∞ ϕ1 ⊓ ϕ2.

(b) Then we show that if Γ ∈ J (ϕ1 ⊓ ϕ2) then Γ⊑∞ ϕ1 ⊓ ϕ2.

Take Γ ∈ J (ϕ1 ⊓ ϕ2), then Γ ∈ J (ϕ1) and Γ ∈ J (ϕ2). Inductively, we
may assume Γ⊑∞ ϕ1 and Γ⊑∞ ϕ2. We apply ⊓ R, and get Γ⊑∞ ϕ1 ⊓ ϕ2.

4. Let us consider the case of ϕ = X

(a) First, we need to prove that I(X) ⊆ I(ψ(X)).

Take Γ ∈ I(X), then Γ⊑∞ X. The generation lemma then gives us
Γ⊑∞ ψ(X), and we conclude Γ ∈ I(ψ(X)).

(b) Then we show that if Γ ∈ J (X), then Γ⊑n X for all n ∈ N.

Assume Γ ∈ J (X). We continue this proof by induction on n in Γ⊑n X.
The base case n = 0 is trivial, since Γ⊑0 X holds for all Γ and X.

For the inductive step, we assume Γ⊑n X and assume Γ ∈ J (X). Since
J (X) ⊆ J (ψ(X)), it follows Γ ∈ J (ψ(X)), and from the induction
hypothesis, we obtain Γ⊑n ψ(X). Then, by applying De f R, we obtain
Γ⊑n+1 X.

5. Let us consider the case of ϕ = ∀r.ϕ1

Chapter 2. Frame-based Description Languages 23

(a) We need to prove that I(∀r.ϕ1) = {x | ∀y ∈ DI . I(r)(x, y) → y ∈ I(ϕ1)}
Take Γ ∈ I(∀r.ϕ1), then we know Γ⊑∞ ∀r.ϕ1. We assume a ∆ ∈ DI such
that I(r)(Γ, ∆), then ∆ consists of all δ such that Γ ⊩ ∀r.δ, and by the
generation lemma we get that ∆⊑∞ ϕ1, and thus ∆ ∈ I(ϕ1).

Assume I(r)(Γ, ∆) implies ∆ ∈ I(ϕ1). Take a ∆ such that I(r)(Γ, ∆). By
the definition of I we get ∆⊑∞ ϕ1, and by the definition of I(r)(Γ, ∆) we
get that ∆ consists of all δ such that Γ ⊩ ∀r.δ. From the generation lemma,
we conclude Γ⊑∞ ∀r.ϕ1. This gives us Γ ∈ I(∀r.ϕ1).

(b) Then we show that Γ ∈ J (∀r.ϕ1) implies Γ⊑∞ ∀r.ϕ1.

Take Γ ∈ J (∀r.ϕ1), and consider ∆ such that I(r)(Γ, ∆). By the definition
of our model this gives us: Γ ⊩ ∀r.δ for all δ ∈ ∆, and we have ∆ ∈ J (ϕ1).
Our induction hypothesis gives us that for any Λ ∈ J (ϕ1) have Λ⊑∞ ϕ1,
and therefore ∆⊑∞ ϕ1. The generation lemma gives us Γ⊑∞ ∀r.ϕ1.

Thus, we can conclude: if Γ ⊨g f p ψ then I⊓(Γ) ⊆ I(ϕ). Since Γ ∈ I⊓(Γ), we get
Γ ∈ I(ϕ), and this implies Γ⊑∞ ϕ.

24

Chapter 3

Attribute Languages

3.1 Introduction

In this chapter, we dive into what is called the AL-family of description logics,
where AL stands for attribute language. The base language allows the following
constructors:

ϕ ::= ⊤ | ⊥ | P | ¬P | X | ϕ⊓ ϕ | ∀r.ϕ | ∃r.⊤

We still consider logics where the TBoxes have circular definitions, and therefore our
syntax includes the symbol X. The interpretation of this logic is the following:

Definition 3.1.1 (Interpretation). An interpretation I of the logic AL is a function
mapping formulas to subsets of a non-empty domain DI , according to the following
rules:

1. I(⊤) = DI

2. I(⊥) = ∅

3. I(¬P) = DI − I(P)

4. I(X) = I(ϕ(X))

5. I(ϕ⊓ψ) = I(ϕ) ∩ I(ψ)

6. I(∃r.⊤) = {x | ∃y ∈ DI . I1(r)(x, y)}

7. I(∀r.ϕ) = {x | ∀y ∈ DI . I2(r)(x, y) → y ∈ I(ϕ)}

There are a few interesting aspects to point out. First, we introduce a negation for
the propositional concept names, referred to from now on as atomic negation, and
a ⊥. Thus far, in the frame-based languages, all subsumptions of the form C ⊑ D
where satisfiable, i.e., there is always an interpretation I such that I(C) ⊆ I(D).
This is not the case anymore: there is no interpretation I that satisfies I(⊤) ⊆ I(⊥).

Furthermore, we now consider a limited existential quantifier and make concepts
of the form:

Parent = Human⊓∃hasChild.⊤⊓∀hasChild.Human

Chapter 3. Attribute Languages 25

The purpose of formula ∃hasChild.⊤ is to ensure that every parent has at least one
child. Clearly, this is not as strong as having a full existential quantifier, but it is a
significant addition to the language in terms of expressive power.

One thing to note about the interpretation I is the case for I(∃r.⊤) and I(∀r.ϕ).
Since we only have an atomic negation and the existential restriction is limited to
⊤, the two quantifiers are not interdefinable. Thus, all interpretations for TBoxes
containing concept descriptions with ∃r and ∀r. have two interpretations for the
relation r. We denote the interpretation of the role of the existential restriction with
I1(r)(x, y), and for the universal quantifier with I2(r)(x, y). However, this gives
us just a fragment of AL, namely the fragment where we have two sets of roles:
the ones that occur existentially quantified and a set of roles that occur universally
quantified, and no role appears in both sets. In this chapter, we only prove the results
for this fragment of AL, which we will refer to as AL′.

From this logic, we can extend to the logic ALE , achieved by adding a full exis-
tential quantifier:

ϕ ::= ⊤ | ⊥ | P | ¬P | X | ϕ⊓ ϕ | ∀r.ϕ | ∃r.ϕ

and the logic ALC, also referred to as ALE U :

ϕ ::= ⊤ | ⊥ | P | ¬P | X | ϕ⊓ ϕ | ϕ⊔ ϕ | ∀r.ϕ | ∃r.ϕ

In this chapter, we consider the above-mentioned fragments for the logics AL
and ALE , referred to as AL′ and ALE ′ respectively, and prove soundness and com-
pleteness with respect to the greatest fixpoint semantics.

3.2 AL′

We start by considering the base language AL′, given by:

ϕ ::= ⊤ | ⊥ | P | ¬P | X | ϕ⊓ ϕ | ∀r.ϕ | ∃r.⊤

Let us introduce the sequent calculus, where we include the family of relations ⊑n

in the proof system.

Γ, ϕ⊑n ϕ
Ax Γ⊑n ⊤

Ax⊤ Γ,⊥⊑n ϕ
Ax⊥ Γ⊑0 ϕ

start

Γ, ϕ1, ϕ2 ⊑ψ

Γ, ϕ1 ⊓ ϕ2 ⊑ψ
⊓ L

Γ⊑n ψ1 Γ⊑n ψ2

Γ⊑n ψ1 ⊓ψ2
⊓ R

Γ, ϕ(X)⊑n ψ

Γ, X ⊑n ψ
De f L

Γ⊑n ψ(X)

Γ⊑n+1 X
De f R

Γ⊑n ϕ

Λ, ∀r.Γ⊑n ∀r.ϕ ∀

Chapter 3. Attribute Languages 26

We note that the only rule added is the Ax⊥ rule. Rules for ∃r.⊤ and ¬P are not
needed, which means formulas of these form can only be added by the axioms or by
the weakening in the ∀ rule.

Otherwise, the proof system is identical to the one in the previous chapter, mak-
ing the soundness and completeness proof straightforward to adjust. The interpreta-
tion of our syntax has been adjusted, and therefore we need to check whether these
additions are sound and complete in our system.

Definition 3.2.1 (Greatest fixpoint semantics). An interpretation under the greatest
fixpoint semantics for AL′ is an interpretation I which has the further property that
whenever J is a function mapping the formulas over the TBox to subsets of the
domain DI in such a way that:

1. J (⊤) = DI = I(⊤)

2. J (⊥) = ∅ = I(⊥)

3. J (P) = I(P)

4. J (¬P) = DI −J (P) = I(¬P)

5. J (X) ⊆ J (ϕ(X))

6. J (ϕ⊓ψ) = J (ϕ)⊓J (ψ)

7. J (∃r.⊤) = {x | ∃y ∈ DI . I1(r)(x, y)}

8. J (∀r.ϕ) = {x | ∀y. I2(r)(x, y) → y ∈ J (ϕ)}

then J (ϕ) ⊆ I(ϕ) for all ϕ.

In the following sections, we do not go over all cases again, since those proofs
are equivalent to the ones in the previous section.

3.2.1 Soundness

We make some minor adjustments necessary to the definition of ⊩, by adding Ax⊥
to the rules used.

Definition 3.2.2. We write Γ ⊩ ψ to denote that the judgement Γ⊑n ψ can be derived
with the rules Ax, Ax⊤, Ax⊥, ⊓ L and De f L for every n ∈ N.

We ensure that the partial cut lemma still holds.

Lemma 3.2.3 (Partial Cut). If Γ ⊩ ψ and ∆, ψ⊑n ρ, then Γ, ∆⊑n ρ for all n ∈ N.

Proof. The only change is the addition of the rule Ax⊥ to the definition of ⊩. There-
fore, we need to make sure this lemma still holds. We still perform an induction on

Chapter 3. Attribute Languages 27

the length of the derivation Γ ⊩ ψ, and we take the case where the last rule used is
Ax⊥:

Γ′,⊥ ⊩ ψ
Ax⊥

We assume the sequent ∆, ψ⊑n ρ, and we need to prove Γ′,⊥⊑n ρ. However, this is
an instance of the Ax⊥ axiom by itself, and so we are done.

Then we move on to the generation lemma, where the new cases added are points
2, 4, and 7. The other rules need a minor adjustment, where we need to consider the
last rule used to be an instance of Ax⊥

Lemma 3.2.4 (Generation). Suppose n > 0:

1. Γ⊑n ⊤ iff Γ ⊩ ⊤

2. Γ⊑n ⊥ iff Γ ⊩ ⊥

3. Γ⊑n P iff Γ ⊩ P

4. Γ⊑n ¬P iff Γ ⊩ ¬P

5. Γ⊑n ψ1 ⊓ψ2 iff Γ⊑n ψ1 and Γ⊑n ψ2

6. Γ⊑n+1 X iff Γ⊑n ϕ(X)

7. Γ⊑n ∃r.⊤ iff Γ ⊩ ∃r.⊤

8. Γ⊑n ∀r.ϕ iff for the set ∆ that contains all subformulas of the TBox and Γ and
∀r.δ such that Γ ⊩ ∀r.δ for all δ ∈ ∆, we have ∆⊑n ϕ.

Proof. 2. Assume Γ⊑n ⊥.

The last rule used was Ax, ⊓ L, De f L (in this case, Ax⊥ and Ax are the same):

• Ax:

Γ′,⊥⊑n ⊥
Ax

It follows directly that Γ′,⊥ ⊩ ⊥.

• ⊓ L:

Γ′, ϕ, ψ⊑n ⊥
Γ′, ϕ⊓ψ⊑n ⊥

⊓ L

By IH we know Γ′, ϕ, ψ ⊩ ⊥, and since ⊓ L maintains the ⊩ operator, we
get Γ′, ϕ⊓ψ ⊩ ⊥.

• De f L

Γ′, ϕ(X)⊑⊥
Γ′, X ⊑⊥

De f L

Chapter 3. Attribute Languages 28

By IH we know Γ′, ϕ(X) ⊩ ⊥, and since De f L maintains the ⊩ operator,
we get: Γ′, X ⊩ ⊥.

The proofs for 4 and 7 are obtained by replacing every instance of ⊥ with ¬P
and ∃r.⊤ respectively.

For the other items we need to consider the last rule used to be ⊥. The only
interesting case is point 8. For the other cases, the sequents that need to be
obtained are just instances of Ax⊥ again.

8. Assume that the last rule used is Ax⊥ to obtain the sequent Γ,⊥⊑n ∀r.ϕ. Then
the set ∆ containing all subformulas of the TBox, Γ, and ∃r.ψ such that Γ ⊩ ∀r.δ,
is equal to the set of all subformulas of the TBox, Γ, ∃r.ψ. Thus, clearly ∆⊑n ϕ,
since ⊥ ∈ ∆.

The definition of ⊩ has slightly changed, and therefore we need to add another
case to the proof of the following lemma.

Lemma 3.2.5. If Γ ⊩ ψ then I⊓(Γ) ⊆ I(ψ) for any interpretation I .

Proof. We prove this by induction on the length of the derivation Γ ⊩ ψ. The last
rule used is one of the following: Ax, Ax⊤, Ax⊥, ⊓ L, or De f L. The only new one is
Ax⊥, and we prove that the lemma still holds.

Assume that the last rule used is Ax⊥, and thus the sequent Γ′,⊥ ⊩ ψ is derived.
Since I(⊥) = ∅, it follows that I⊓(Γ′) ∩ I(⊥) = ∅ ⊆ I(ψ) for all ψ.

Now, we have all we need to complete the soundness proof.

Theorem 3.2.6 (Soundness). Γ⊑∞ ψ implies Γ ⊨g f p ψ.

Proof. The strategy of this soundness proof is the same as before: we prove that for
each ψ and interpretation I one has

⋃
Γ⊑∞ ψ

I⊓(Γ) ⊆ I(ψ)

Then, taking J (ϕ) :=
⋃

Γ⊑∞ ϕ I⊓(Γ), we show that J is a function that meets the
conditions for the greatest fixpoint interpretation. We go over the cases where ψ is
one of: ⊥, ∃r.⊤, and ¬P, since those are the new cases.

• Check J (⊥) = ∅. Take x ∈ J (⊥), then there is a Γ such that Γ⊑∞ ⊥, and x ∈
I⊓(Γ). By the generation lemma we get Γ ⊩ ⊥, and therefore x ∈ I(⊥) = ∅.
This gives us J (⊥) = ∅.

• Check J (¬P) = DI −J (P).

Take x ∈ J (¬P), then there is a Γ such that x ∈ I⊓(Γ) and Γ⊑∞ ¬P. By the
generation lemma, Γ ⊩ ¬P, and thus x ∈ I(¬P) = DI − I(P) = DI −J (P),
by assumption on P.

Chapter 3. Attribute Languages 29

For the other direction, assume x ∈ DI −J (P) = DI − I(P) = I(¬P). Since
the judgement ¬P⊑∞ ¬P holds, we have that I(¬P) ⊆ J (¬P), and thus x ∈
J (¬P).

• Check J (∃r.⊤) = {x | ∃y ∈ DI . I1(r)(x, y)}.

Take x ∈ J (∃r.⊤), then there is Γ such that x ∈ I⊓(Γ) and Γ⊑∞ ∃r.⊤. By the
generation lemma we get Γ ⊩ ∃r.⊤, and thus x ∈ I(∃r.⊤). Thus, there is a y
such that I1(r)(x, y), and y ∈ I(⊤). Since ⊤⊑∞ ⊤, we get y ∈ J (⊤).

Assume x, y ∈ DI such that I1(r)(x, y). Since y ∈ I(⊤) we have x ∈ I(∃r.⊤).
Since ∃r.⊤⊑∞ ∃r.⊤, we get x ∈ J (∃r.⊤).

3.2.2 Completeness

The completeness proof is where it becomes interesting. The strategy is the same: we
create a greatest fixpoint interpretation and show that it implies Γ⊑∞ ψ. However,
the model looks different. Since we want the interpretation of ⊥ to be empty, we
want to adjust our domain. Let us introduce the following notion:

Definition 3.2.7 (Consistency). A set of formulas Γ is called consistent iff there is no
proof Γ⊑n ⊥ for any n > 0.

We adjust our domain to contain all the consistent sets of subformulas of the TBox
T .

Furthermore, we need to adjust our interpretation for r. We know have two
operators addressing roles: ∃r and ∀r. As already mentioned, the two restrictions
are not interdefinable and thus need to be treated independently. We solve this by
adding the following interpretations.

I1(r)(Γ, ∆) ↔Γ ⊩ ∃r.⊤
I2(r)(Γ, ∆) ↔ ∆ consists of all δ in the set

of subformulas of T for which Γ ⊩ ∀r.δ

We now move on to the completeness proof.

Theorem 3.2.8 (Completeness). If Γ ⊨g f p ψ then Γ⊑∞ ψ

Proof. The strategy is the same as before: we create a greatest fixpoint interpretation
I , such that Γ ⊩g f p ψ implies I⊓(Γ) ⊆ I(ψ), which implies Γ⊑∞ ψ.

Chapter 3. Attribute Languages 30

First, we state our interpretation:

DI = consistent finite sets of subformulas of the TBox T
I(ψ) = {Γ | Γ⊑∞ ψ}

I1(r)(Γ, ∆) ↔ Γ ⊩ ∃r.⊤
I2(r)(Γ, ∆) ↔ ∆ consists of all δ in the set

of subformulas of T for which Γ ⊩ ∀r.δ

The proof consists of two elements:

(a) Show that I satisfies the conditions for the fixpoint interpretation

(b) Show that I is indeed a greatest interpretation: J (ψ) ⊆ I(ψ) for all J and
all ϕ.

1. ψ = ⊥:

(a) We want to show that I(⊥) = ∅. This is the case, since the domain only
contains consistent sets of sentences.

(b) We want to show that J (⊥) ⊆ I(⊥). This follows from J (⊥) = I(⊥) =

∅.

2. ψ = ¬P:

(a) We need to prove: I(¬P) = DI − I(P)

Take Γ ∈ I(¬P), then by assumption on J : I(P) = J (P). Then, we get
Γ ∈ J (¬P) = DI −J (P) = DI − I(P).

(b) Then we need to show that J (¬P) ⊆ I(¬P).

Γ ∈ J (¬P) and thus Γ ∈ DI −J (P) = DI − I(P) = I(¬P).

3. ψ = ∃r.⊤:

(a) We need to show that I(∃r.⊤) = {x | ∃y ∈ DI . I1(r)(x, y)}
Take Γ ∈ I(∃r.⊤), then Γ⊑∞ ∃r.⊤. By generation, we get Γ ⊩ ∃r.⊤.
By the definition of our interpretation, we then have ∆ ∈ DI such that
I1(r)(Γ, ∆).

For the other direction, assume Γ and ∆ such that I1(r)(Γ, ∆). Then Γ ⊩

∃r.⊤ and Γ⊑∞ ∃r.⊤, and thus Γ ∈ I(∃r.⊤).

(b) Then show that J (∃r.⊤) ⊆ I(∃r.⊤).

Take Γ ∈ J (∃r.⊤) then there exists a ∆ such that I1(r)(Γ, ∆). Then, by
the definition of I1(r), we have Γ⊑∞ ∃r.⊤.

Chapter 3. Attribute Languages 31

3.3 ALE ′

In this section we consider the logic ALE ′, obtained by adding the full existential
constructor to AL′. This logic is only one step removed from ALC. The only differ-
ence between the two logics is the disjunction. However, this does simplify the logic
significantly, and we can easily use the strategy we have been using so far.

We introduce the following grammar:

ϕ ::= ⊤ | ⊥ | X | P | ¬P | ϕ⊓ ϕ | ∃r.ϕ | ∀r.ϕ

Then, we add the following rule to the sequent calculus described in the previous
section:

ϕ ⊑n χ

Γ′, ∃r.ϕ ⊑n ∃r.χ ∃

We extend the greatest fixpoint interpretation in such a way that any function J
needs to fulfill the condition:

J (∃r.ϕ) = {x | ∃y ∈ J (ϕ). I1(r)(x, y)}

The definition of ⊩ stays the same as defined in 3.2.2, and therefore we do not
need to prove the partial cut lemma 3.2.3 again. We can use these directly for the
generation and soundness proof.

3.3.1 Soundness

The generation lemma is adjusted to include the case of ∃r.ψ.

Lemma 3.3.1 (Generation). Suppose n > 0:

7. Γ⊑n ∃r.ψ iff there is a subformula ρ of the TBox or of Γ,∃r.ψ such that Γ ⊩ ∃r.ρ
and ρ⊑n ψ.

Proof. All other cases remain the same, so we only prove point 7:

7. To show: Γ⊑n ∃r.ψ iff Γ ⊩ ∃r.ρ and ρ⊑n ψ.

The right-to-left direction is the following derivation:

Γ ⊩ ∃r.ρ
ρ⊑n ψ

∃r.ρ⊑n ∃r.ψ ∃

Γ⊑n ∃r.ψ
pc

For the other direction, assume Γ⊑n ∃r.ψ. Again, we perform an induction on
the length of this derivation. The last rule used is one of the following Ax,
Ax⊥, ⊓ L, De f L, ∃. Our goal is to find the ρ such that Γ ⊩ ∃r.ρ and ρ⊑n ψ.

Chapter 3. Attribute Languages 32

• Ax:

Γ′, ∃r.ψ⊑n ∃r.ψ
Ax

then, ρ = ψ. Since Γ′, ∃r.ψ ⊩ ∃r.ψ and ψ⊑n ψ.

• Ax⊥:

Γ′,⊥⊑n ∃r.ψ Ax⊥

Then anything follows from Γ′,⊥ and thus Γ′,⊥ ⊩ ∃r.ψ and ψ⊑n ψ. Thus,
ρ = ψ.

• ⊓ L:

Γ′, ϕ1, ϕ2 ⊑n ∃r.ψ
Γ′, ϕ1 ⊓ ϕ2 ⊑n ∃r.ψ

⊓ L

Then we can use the same ρ as in the IH.

• De f L:

Γ′, ϕ(X)⊑n ∃r.ψ
Γ′, X ⊑n ∃r.ψ

De f L

We can use the same ρ as in the IH.

• ∃:

ϕ⊑ψ

Γ′, ∃r.ϕ⊑∃r.ψ ∃

Then, from the induction hypothesis we have ϕ⊑n ψ, and Γ′, ∃r.ϕ ⊩ ∃r.ϕ
can be derived by Ax.

The following lemma does not change, but we state it again since we use it for
the soundness proof.

Lemma 3.3.2. If Γ ⊩ ψ then I⊓(Γ) ⊆ I(ψ) for any interpretation I .

Theorem 3.3.3 (Soundness). If Γ⊑∞ ψ then Γ ⊨g f p ψ.

Proof. This is equivalent to proving that for each ψ and greatest fixpoint interpreta-
tion I one has

⋃
Γ⊑∞ ψ

I⊓(Γ) ⊆ I(ψ)

And we take J (ψ) :=
⋃

Γ⊑∞ ψ I⊓(Γ), and show that J satisfies the greatest fixpoint
conditions. We only consider the new case ψ = ∃r.ψ1

Chapter 3. Attribute Languages 33

• We need to show that J (∃r.ψ1) = {x | ∃y ∈ J (ϕ). I1(r)(x, y)}

Take x ∈ J (∃r.ψ1), then there is Γ such that x ∈ I⊓(Γ) and Γ⊑n ∃r.ψ1. The
generation lemma gives us a ρ such that Γ ⊩ ∃r.ρ and ρ⊑∞ ψ1. This gives us
x ∈ I(∃r.ρ) so there exists a y such that I1(r)(x, y) and y ∈ I(ρ). Then, since
ρ⊑∞ ψ1, y ∈ J (ψ1) by the definition of J .

Now assume x, y such that I1(r)(x, y) and y ∈ J (ψ1). Then for some Γ such
that Γ⊑∞ ψ1 we have y ∈ I⊓(Γ) = I(⊓ Γ), where ⊓ Γ is the conjunction of all
formulas γ ∈ Γ. We derive the following:

Γ⊑∞ ψ1

⊓ Γ⊑∞ ψ1
⊓ L

∃r.⊓ Γ⊑∞ ∃r.ψ1
∃

Then, since y ∈ I(⊓ Γ), we have x ∈ I(∃r.⊓ Γ), and therefore x ∈ J (∃r.ψ1).

3.3.2 Completeness

Then, we move on to the completeness proof. The main idea of our model remains
the same, but we adjust the interpretation I1(r)(Γ, ∆) to fit our new constructor ∃r.ϕ.

Theorem 3.3.4 (Completeness). If Γ ⊨g f p ψ then Γ⊑∞ ψ.

Proof. The strategy for the proof is the same as chapter 2.

DI = consistent finite sets of subformulas of the TBox

I(ψ) ={Γ | Γ⊑∞ ψ}
I1(r)(Γ, ∆) ↔ Γ ⊩ ∃r.⊓∆

I2(r)(Γ, ∆) ↔ ∆ consists of all δ in the set

of subformulas of T for which Γ ⊩ ∀r.δ

We only consider the case of ∃r.ψ1, since this is the only one that changed.

• ψ = ∃r.ψ1:

1. First, we check whether I(∃r.ψ1) = {x | ∃y ∈ I(ψ1). I1(r)(x, y)}

– Γ ∈ I(∃r.ψ1) and thus Γ⊑∞ ∃r.ψ1. Then by the generation lemma,
there is a formula ρ such that Γ ⊩ ∃r.ρ and ρ⊑∞ ϕ. This gives us
{ρ} ∈ I(ϕ) and I1(r)(Γ, {ρ}), which is what we want.

– Assume Γ, ∆ ∈ DI such that I1(r)(Γ, ∆) and ∆ ∈ I(ψ1). Then
∆⊑∞ ψ1, and thus ρ⊑∞ ψ for ρ = ⊓∆. The definition of I1(r) gives
us Γ ⊩ ∃r.ρ. From the generation lemma, it follows Γ⊑∞ ∃r.ψ1.

2. Now, check Γ ∈ J (∃r.ψ1) implies Γ⊑∞ ∃r.ψ1

Chapter 3. Attribute Languages 34

This is done by induction on the complexity of the formula. Thus, we as-
sume that this holds for ψ1. Now assume Γ ∈ J (∃r.ψ1). By the definition
of any interpretation J , there is a ∆ such that I1(r)(Γ, ∆) and ∆ ∈ J (ψ1).
By IH, we get ∆⊑∞ ψ1, and thus ρ⊑∞ ψ for ρ = ⊓∆. Since the I1(r)(Γ, ∆)
gives us Γ ⊩ ∃r.ρ and thus generation gives us Γ⊑∞ ∃r.ψ1.

35

Chapter 4

Quantifier-free Description Logic

4.1 Introduction

In chapters 2 and 3, the logics used were intuitionistic in the sense that the quantifiers
∀ and ∃ were not interdefinable. Therefore, the sequents in our calculus were of the
form Γ⊑n ϕ, with a set of formulas on the left and one formula on the right. In this
section, we show a strategy for sequents of the form Γ⊑n ∆.

We study the following logic:

ϕ ::= ⊤ | ⊥ | P | X | ϕ⊓ ϕ | ϕ⊔ ϕ

This is not a commonly used DL. The absence of quantifiers causes for limits in its
expressive power.

One can also wonder whether we actually want a logic of this form to have cir-
cular definition. A circular definition in this logic is of the form:

Parent = Parent⊓ Person

However, why would we want to state that a Parent is a Parent in the definition
again?

Nevertheless, we dive into this logic, and prove soundness and completeness
with respect to the greatest fixpoint semantics. We will see that a calculus where we
allow for sets of formulas on the right, requires a different strategy in both proofs.

The logic has the following interpretation.

Definition 4.1.1 (Interpretation). An interpretation I of this logic is a function map-
ping formulas to subsets of a non-empty domain DI , according to the following
rules:

1. I(⊤) = DI

2. I(⊥) = ∅

3. I(X) = I(ϕ(X))

4. I(ϕ⊓ψ) = I(ϕ) ∩ I(ψ)

5. I(ϕ⊔ψ) = I(ϕ) ∪ I(ψ)

Chapter 4. Quantifier-free Description Logic 36

Then we add two rules for the ⊔-operator, and make minor adjustments to the
already existing rules:

Γ, ϕ ⊑n ∆, ϕ
Ax Γ,⊥⊑n ∆ Ax⊥ Γ⊑n ∆,⊤ Ax⊤ Γ⊑0 ∆ start

Γ, ϕ, ψ⊑n ∆
Γ, ϕ⊓ψ⊑n ∆ ⊓ L

Γ⊑n ∆, ψ Γ⊑n ∆, χ

Γ⊑n ∆, ψ⊓ χ
⊓ R

Γ, ϕ(X) ⊑n ∆
Γ, X ⊑n ∆

De f L
Γ ⊑n ∆, ϕ(X)

Γ ⊑n+1 ∆, X
De f R

Γ⊑n ∆, ϕ, ψ

Γ⊑n ∆, ϕ⊔ψ
⊔ R

Γ, ϕ⊑n ∆ Γ, ψ⊑n ∆
Γ, ϕ⊔ψ⊑n ∆ ⊔ L

Then we have weakening in both sides of the axioms and it is thus evident that
the following lemma holds.

Lemma 4.1.2. If Γ⊑n ∆ then Γ, Λ⊑n ∆, Ψ for all n ∈ N.

Then, we interpret a set of formulas Γ on the left of ⊑n as I⊓(Γ) =
⋂{I(γ) | γ ∈

Γ}, and the sets of formulas on the right of ⊑n as I⊔(∆) =
⋃{I(δ) | δ ∈ ∆}.

We extend the definition of the greatest fixpoint semantics:

Definition 4.1.3. An interpretation of a TBox under the greatest fixpoint semantics is
an interpretation I which has the further property that whenever J is a function
mapping formulas over the TBox to subsets of DI in such a way that

1. J (⊤) = DI

2. J (⊥) = ∅

3. J (P) = I(P)

4. J (X) ⊆ J (ϕ(X))

5. J (ϕ⊓ψ) = J (ϕ) ∩ J (ψ)

6. J (ϕ⊔ψ) = J (ϕ) ∪ J (ψ)

then J (ϕ) ⊆ I(ϕ) for all ϕ.

4.2 Soundness

In order to prove soundness and completeness, we extend our definition of ⊩ and
adjust our generation lemma.

Definition 4.2.1. We write Γ ⊩ ∆ if the judgement Γ⊑n ∆ can be derived by using
the rules Ax, Ax⊤, Ax⊥, ⊓ L, ⊔ L and De f L for every n ∈ N.

Lemma 4.2.2 (Partial Cut). If Γ ⊩ ψ, ∆ and Λ, ψ⊑n Ψ then Γ, Λ⊑n ∆, Ψ.

Chapter 4. Quantifier-free Description Logic 37

This lemma is proven by induction on the length of the derivation Γ ⊩ ψ, ∆. This
proof is similar to the one in the previous chapters, since the last rule used is only
one of the left rules, or an axiom. Therefore, the sets of formulas ∆ on the right side
of ⊩ does not affect the proof.

We now have sets of formulas on both sides, and therefore we need to prove the
following for soundness and completeness: Γ⊑∞ ∆ iff Γ ⊨g f p ∆. This entails we need
to adjust our generation lemma to include sets of sentences, as well.

Lemma 4.2.3 (Generation). Suppose n > 0:

1. If ∆ is a set containing only propositional letters P, ⊤ or ⊥, we have:
Γ⊑n ∆ iff Γ ⊩ ∆

2. Γ⊑n+1 X, ∆ iff Γ⊑n ϕ(X), ∆

3. Γ⊑n ψ1 ⊓ψ2, ∆ iff Γ⊑n ψ1, ∆ and Γ⊑n ψ2, ∆

4. Γ⊑n ψ1 ⊔ψ2, ∆ iff Γ⊑n ψ1, ψ2, ∆

Proof. The strategy for this proof is basically the same as before. For the right-to-left
direction, we apply the appropriate rule (2,3,4), or it is in the definition of ⊩ (1). For
the left-to-right direction, in case 2, 3 and 4 we again perform an induction on the
length of the derivation. However, the last rule used can now be any of the rules.

1. These cases require the same reasoning as we have seen before: the last rule
used can only possibly one of Ax, Ax⊤, Ax⊥, ⊓ L, De f L, ⊔ L, and those are
the ones defined in ⊩.

2. Γ⊑n+1 X, ∆ iff Γ⊑n ϕ(X), ∆.

The right-to-left direction is just applying the rule De f R. For the left-to-right
direction, we prove by induction on the length of the derivation Γ⊑n+1 X, ∆.
As a base case we assume that the last rule used was Ax, Ax⊤, or Ax⊥:

• Ax: There are two cases, either X is not the principal formula or it is.

Assume it is then:

Γ′, X ⊑n+1 X, ∆
Ax

We derive the following:

X, Γ′ ⊩ X, ∆
Ax

ϕ(X)⊑n ϕ(X)

X ⊑n ϕ(X)
De f L

X, Γ′ ⊑n ϕ(X), ∆
pc

Assume it is not, then:

Γ′, ψ⊑n+1 X, ψ, ∆
Ax

Then our wanted result: Γ′, ψ⊑n ϕ(X), ψ, ∆ is just an instance of Ax.

Chapter 4. Quantifier-free Description Logic 38

• Ax⊥:

Γ′,⊥⊑n+1 X, ∆ Ax⊥

Then the judgement we want to derive Γ′,⊥⊑n ϕ(X), ∆, is an instance of
Ax⊥.

• Ax⊤:

Γ⊑n+1 X,⊤, ∆ Ax⊤

then the judgement we want to derive: Γ⊑n ϕ(X),⊤, ∆ is an instance of
Ax⊤.

For the inductive step, we can assume that X was either principal in the deriva-
tion, or it was not. If it was principal, then the last rule used is De f R on the
judgement Γ⊑n ϕ(X), ∆. This is what we want to derive, so we are done.

If X is not principal, the rule used before is either a one premise or a two-
premise rule. We are going to assume that it was a rule applied on Γ, but it can
be a rule applied on ∆, and it will be symmetric.

• Assume the last rule used was a one-premise rule L, and so the derivation
is the following:

Γ′ ⊑n+1 X, ∆
Γ⊑n+1 X, ∆ L

From the inductive step we can derive Γ′ ⊑n ϕ(X), ∆, and we apply the
rule L on this to obtain Γ⊑n ϕ(X), ∆.

• Then we assume the last rule used was a two premise rule L, and so the
derivation is the following:

Γ′ ⊑n+1 X, ∆ Γ′′ ⊑n+1 X, ∆
Γ⊑n+1 X, ∆ L

Then from the inductive step we get: Γ′ ⊑n ϕ(X), ∆ and Γ′′ ⊑n ϕ(X), ∆.
Applying L gives us Γ⊑n ϕ(X), ∆.

If the last rule used is one applied to ∆, this should be identical. There is only
one case that might be of interest, and that is the case where the De f R rule is
last used, but X is not principal.

• We assume the following derivation:

Γ⊑n+1 X, ∆′, ϕ(Y)
Γ⊑n+2 X, ∆′, Y

De f R

Chapter 4. Quantifier-free Description Logic 39

The induction hypothesis gives us Γ⊑n ϕ(X), ∆′, ϕ(Y)

Γ⊑n ϕ(X), ∆′, ϕ(Y)
Γ⊑n+1 ϕ(X), ∆′, Y

De f R

3. Γ⊑n ψ1 ⊓ψ2, ∆ iff Γ⊑n ψ1, ∆ and Γ⊑n ψ2, ∆

For the right-to-left direction we can just apply ⊓ R, to obtain our wanted re-
sult.

The left-to-right direction we prove by induction on the length of the deriva-
tion. First, assume the last rule used is one of the axioms:

• Ax:

In this case there are two options: either ψ1 ⊓ψ2 is the axiomatic formula
or it is not.

First let us consider the case that it is:

Γ′, ψ1 ⊓ψ2 ⊑n ψ1 ⊓ψ2, ∆
Ax

We can obtain the following derivation:

Γ′, ψ1, ψ2 ⊑n ψ1, ∆
Ax

Γ′, ψ1 ⊓ψ2 ⊑n ψ1, ∆
⊓ L

Γ′, ψ1, ψ2 ⊑n ψ2, ∆
Ax

Γ′, ψ1 ⊓ψ2 ⊑n ψ2, ∆
⊓ L

Then for ψ1 ⊓ψ2 not being principal:

Γ′, ϕ⊑n ϕ, ψ1 ⊓ψ2, ∆
Ax

Our wanted results are instances of the axioms, and we are done.

• For Ax⊥ and Ax⊤ we obtain the same as in the previous derivation, that
the wanted results can be derived because they are instances of the ax-
ioms.

Then for the inductive case, we consider the case where ϕ1 ⊓ ϕ2 is principal,
and where it is not. If it is not, the argument is identical to the one in the
previous step.

If ϕ1 ⊓ ϕ2 is principal, then the last rule used is ⊓ R, and then the step before
applying this rule in the derivation gives our wanted result.

4. Γ⊑n ψ1 ⊔ψ2, ∆ iff Γ⊑n ψ1, ψ2, ∆

The right-to-left direction is just applying the rule ⊔ R.

For the left-to-right direction we assume Γ⊑n ψ1 ⊔ψ2, ∆. For the base case we
assume the last rule used is either Ax, Ax⊤ or Ax⊥.

Chapter 4. Quantifier-free Description Logic 40

• Ax:

Γ′, ψ1 ⊔ψ2 ⊩ ψ1 ⊔ψ2, ∆
Ax

We derive our result in the following way:

Γ′, ψ1 ⊑n ψ1, ψ2, ∆
Ax

Γ′, ψ2 ⊑n ψ1, ψ2, ∆
Ax

Γ′, ψ1 ⊔ψ2 ⊑n ψ1, ψ2, ∆
⊔ L

For the case where ψ1 ⊔ψ2 is not principal in the axiom, our wanted result
is just another instance of the axiom: Γ′, ϕ⊑n ϕ, ψ1, ψ2, ∆.

• For Ax⊤ our wanted result is an instance of the axiom Γ⊑n ⊤, ψ1, ψ2, ∆.

• The same holds for Ax⊥: Γ′,⊥⊑n ψ1, ψ2, ∆.

Then for the inductive step, we have an identical case as above. The last rule
used is ⊔ L, ⊓ L, De f L, ⊔ R, ⊓ R, or De f R. We can easily show using the induc-
tion hypopthesis that it holds.

Lemma 4.2.4. If Γ ⊩ ∆ then I⊓(Γ) ⊆ I⊔(∆) for any interpretation I .

Proof. We have proven this lemma in chapter 2 by induction on the length of the
derivation and considered the cases where the last rule used was Ax, Ax⊤, Ax⊥,
⊓ L and De f L. Thus, we only consider the rule ⊔ L:

Γ′, ϕ1 ⊑n ∆ Γ′, ϕ2 ⊑n ∆
Γ′, ϕ1 ⊔ ϕ2 ⊑n ∆

⊔ L

By IH, we have that I⊓(Γ′) ∩ I(ϕ1) ⊆ I⊔(∆) and I⊓(Γ′) ∩ I(ϕ2) ⊆ I⊔(∆). By
definition of intersection and union, we know:

(I⊓(Γ′) ∩ I(ϕ1)) ∪ (I⊓(Γ′) ∩ I(ϕ2))

= I⊓(Γ′) ∩ (I(ϕ1) ∪ I(ϕ2))

= I⊓(Γ′) ∩ I(ϕ1 ⊔ ϕ2)

Therefore, we conclude: I⊓(Γ′) ∩ I(ϕ1 ⊔ ϕ2) ⊆ I⊔(∆).

Now, we prove the soundness and completeness, but using a different strategy
than the previous sections. Before, we wanted the following interpretation to satisfy
the conditions for the greatest fixpoint interpretation:

J (ψ) :=
⋃

Γ⊑∞ ψ

I⊓(Γ)

This means that we need to prove that J (ϕ1 ⊔ ϕ2) = J (ϕ1) ∪ J (ϕ2), however this
is not the case. Consider for example Γ = {ϕ1 ⊔ ϕ1}. Then, ϕ1 ⊔ ϕ2 ⊑∞ ϕ1 ⊔ ϕ2, and

Chapter 4. Quantifier-free Description Logic 41

thus I(ϕ1 ⊔ ϕ2) ⊆ J (ϕ1 ⊔ ϕ2). However, the following does not, in general, hold:
ϕ1 ⊔ ϕ2 ⊑n ϕ1 or ϕ1 ⊔ ϕ2 ⊑n ϕ2. Therefore, I(ϕ1 ⊔ ϕ2) ̸⊆ J (ϕ1) and I(ϕ1 ⊔ ϕ2) ̸⊆
I(ϕ1). So, J (ϕ1 ⊔ ϕ2) ̸= J (ϕ1) ∪ J (ϕ2). Let us prove soundness in a different way.

First, we introduce the following definitions.

Definition 4.2.5 (Pre-interpretation). A function J mapping formulas to elements
of a domain DJ is called a pre-interpretation, if it satisfies the following conditions:

• J (⊤) = DJ

• J (⊥) = ∅

• J (ϕ⊓ψ) = J (ϕ) ∩ J (ψ)

• J (ϕ⊔ψ) = J (ϕ) ∪ J (ψ)

• J (X) ⊇ J (ϕ(X))

Definition 4.2.6 (Hierarchy of Pre-interpretations). Given a greatest fixpoint inter-
pretation I , we define a hierarchy or pre-interpretations in the following way:

• Iα(P) = I(P)

• Iα(⊤) = I(⊤)

• Iα(⊥) = I(⊥)

• Iα(ϕ⊓ψ) = Iα(ϕ) ∩ Iα(ψ)

• Iα(ϕ⊔ψ) = Iα(ϕ) ∪ Iα(ψ)

• I0(X) = DI

• Iα+1(X) = Iα(ϕ(X))

• Iλ(X) =
⋂

α<λ Iα(X)

These definitions are based on literature on fixpoints, found in [11]. We dive into
this intuition in chapter 5.

We use this a hierarchy to prove soundness. We start by fixing a greatest fixpoint
interpretation I , and prove Γ⊑∞ ∆ implies I⊓(Γ) ⊆ I⊔

α (∆) for all α. Since for every
interpretation I = Iα holds for some α (this result can be found in [11]), and I is
arbitrary, we get Γ ⊨g f p ∆.

Theorem 4.2.7 (Soundness). If Γ⊑∞ ∆ then Γ ⊨g f p ∆.

Proof. Take a greatest fixpoint interpretation I . We prove Γ⊑∞ ∆ implies I⊓(Γ) ⊆
I⊔

α (∆) for all α, and argue by induction on α and a sub-induction on the complexity
of ∆. We consider the following two cases:

1. ∆ only contains variables, propositional concept names, ⊤, and ⊥.

2. ∆ contains boolean formulas, ψ1 ⊓ψ2, ψ1 ⊔ψ2.

1. Assume ∆ is a set of variables, propositional letters, ⊤, and ⊥.

We consider the base case α = 0. If there are no variables in ∆, then I⊔
α (∆) =

I⊔(∆). In this situation, we have Γ ⊩ ∆ and by lemma 4.2.4 we have I⊓(Γ) ⊆
I⊔(∆). If there is at least one variable X in ∆, then I⊔

α (∆) = DI , and clearly
I⊓(Γ) ⊆ I⊔

α (∆).

Now let us move on to the inductive step. We assume that I⊓(Γ) ⊆ I⊔
β (∆)

holds for all β < α, and prove that this holds for α

Chapter 4. Quantifier-free Description Logic 42

• If ∆ contains only propositional letters, ⊤ and ⊥, then by definition 4.2.6
I⊔

α (∆) = I⊔(∆). The generation lemma gives us Γ ⊩ ∆, and by lemma
4.2.4, we get I⊓(Γ) ⊆ I⊔(∆).

• Then consider the case where ∆ contains variables: ∆ = {X1, . . . Xk} ∪ ∆′

and α > 0.

We assume Γ⊑∞ ∆. By the generation lemma we get
Γ⊑∞ ϕ1(X1), . . . , ϕk(Xk), ∆′ where each ϕi is associated to Xi.

Our IH is as follows:

I⊓(Γ) ⊆ Iβ(ϕ1(X1)) ∪ . . . ∪ Iβ(ϕk(Xk)) ∪ I⊔(∆′) (4.1)

for all β < α.

If α is a successor ordinal, so α = β + 1, then we get our result by defini-
tion 4.2.6.

If α is a limit ordinal, we get our result by (4.1) and:

⋂
β<α

(Iβ(X1) ∪ . . . ∪ Iβ(Xk)) ⊆ Iα(X1) ∪ . . . ∪ Iα(Xk) (4.2)

2. For this case, we assume for the induction hypothesis that I⊓(Γ) ⊆ I⊓
α (∆′′) for

any ∆′′ with a complexity less than the complexity of ∆.

• ∆ = {ψ1 ⊓ψ2} ∪ ∆′

By the generation lemma we get that Γ⊑∞ ψ1, ∆′ and Γ⊑∞ ψ2, ∆′, and
by our induction hypothesis, we get that I⊓(Γ) ⊆ Iα(ψ1) ∪ I⊔

α (∆′) and
I⊓(Γ) ⊆ Iα(ψ1) ∪ I⊔

α (∆′). Then, our definition 4.2.6 gives us:

I⊓(Γ) ⊆(Iα(ψ1) ∪ I⊔
α (∆

′)) ∩ (Iα(ψ1) ∪ I⊔
α (∆

′))

= I⊔
α (∆

′) ∪ (Iα(ψ1) ∩ Iα(ψ2))

= I⊔
α (∆

′) ∪ Iα(ψ1 ⊓ψ2)

This is what we wanted to prove.

• ∆ = {ψ1 ⊔ψ2} ∪ ∆′

By the generation lemma we have Γ⊑∞ ψ1, ψ2, ∆′. Our induction hypoth-
esis, and our definition 4.2.6 we have that

I⊓
α (Γ) ⊆Iα(ψ1) ∪ Iα(ψ2) ∪ I⊔

α (∆
′)

= Iα(ψ1 ⊔ψ2) ∪ I⊔
α (∆

′)

Chapter 4. Quantifier-free Description Logic 43

4.3 Completeness

We require a new strategy for the proof of completeness. We first sketch why the
previous strategy did not work. Consider the interpretation:

DI = consistent sets of subformulas of the TBox

I(ψ) = {Γ | Γ⊑∞ ψ}

We need to prove that I(ϕ1 ⊔ ϕ2) = I(ϕ1)∪I(ϕ2). This means that if Γ ∈ I(ϕ1 ⊔ ϕ2),
then Γ ∈ I(ϕ1) or Γ ∈ I(ϕ2). In our interpretation, this translates to: if Γ⊑∞ ϕ1 ⊔ ϕ2,
then Γ⊑∞ ϕ1 or Γ⊑∞ ϕ2. However, if we take Γ = {ϕ1 ⊔ ϕ2}, we see that this is not
the case. Thus, let us move on to our adjusted proof.

Theorem 4.3.1 (Completeness). If Γ ⊨g f p ∆ then Γ⊑∞ ∆.

Proof. Assuming Γ ⊨g f p ∆, we prove by induction on n that Γ⊑n ∆ for all n ∈ N.
The base case n = 0, is trivial, since Γ⊑0 ∆ holds for all Γ, ∆ by the start-axiom.

Assume Γ⊑n ∆, and prove Γ⊑n+1 by a sub-induction on the sum of the complexities
of the formulas in ∆.

1. ∆ only contains variables and propositional letters, ⊤, and ⊥.

2. ∆ contains formulas of the form ψ1 ⊓ψ2, ψ1 ⊔ψ2.

1. • Assume ∆ only contains propositional letters, ⊤ and ⊥. Then by the gen-
eration lemma, we have Γ ⊩ ∆. Since this derivation does not use the
De f R rule by definition of ⊩, all leaves of this derivation are Ax rules,
and none of them are start. This means that we have Γ⊑n P for any n so
also n + 1.

• Now assume ∆ = {X1, . . . , Xk} ∪ ∆′ and assume Γ⊑n ∆. By assumption,
we have I⊓(Γ) ⊆ I⊔(∆). By definition of I have I(Xi) ⊆ I(ϕi(X))

for all variables Xi ∈ ∆. Transitivity of ⊆ gives us I⊓(Γ) ⊆ I(ϕ1(X1)) ∪
. . .∪I(ϕk(Xk))∪I⊔(∆′). The, the IH gives us Γ⊑n ϕ1(X1), . . . , ϕk(Xk), ∆′.
Applying De f R, k times, to obtain Γ⊑n+k X1, . . . , Xk, ∆′, and thus
Γ⊑n+1 X1, . . . , XK, ∆′.

2. Assume ∆ contains the formulas ψ1 ⊓ψ2 or ψ1 ⊔ψ2.

• Assume Γ⊑n ψ1 ⊓ψ2, ∆′. By the generation lemma, we obtain Γ⊑n ψ1, ∆′

and Γ⊑n ψ2, ∆′. The induction hypothesis for ∆ gives us Γ⊑n+1 ψ1, ∆′ and
Γ⊑n+1 ψ2, ∆′, and applying ⊓ R gives us Γ⊑n+1 ψ1 ⊓ψ2, ∆′.

• Assume Γ⊑n ψ1 ⊔ψ2, ∆′. By the generation lemma, we obtain
Γ⊑n ψ1, ψ2, ∆′. The induction hypothesis gives Γ⊑n+1 ψ1, ψ2, ∆′ and ap-
plying ⊔ R gives us Γ⊑n+1 ψ1 ⊔ψ2, ∆′.

44

Chapter 5

Explicit Fixpoints

5.1 Introduction

Up to now, we have dealt with different small description logics allowing cyclic
TBoxes, and we used greatest fixpoint semantics to obtain unique interpretations.
However, not every application of a TBox benefits from a greatest fixpoint interpre-
tation. We sketch an argument given in [10].

Greatest fixpoint semantics assign the greatest possible solution to the equation
X = f (X), and are primarily meant to interpret non-well-founded definitions. The
example used in [10] is the class of streams: we start by having a node, and keep
adding a successor that is a stream, obtaining an infinite sequence of nodes. The
definition of a stream is then given to be:

stream = node⊓ ≤ 1successor.⊤⊓∃successor.stream

In this definition we only want infinite sequences to be streams, and therefore would
assign a greatest fixpoint interpretation to the concept name stream.

Then, let us consider the class of lists. The definition of a list is similar to the
definition of a stream apart from the property that an empty-list is also considered a
list. Thus we get:

list = emptylist⊔(node⊓ ≤ 1successor.⊤⊓∃successor.list)

Here, an interpretation for list can be a finite subset of the domain. This class benefits
there from least fixpoint semantics, where equations X = f (X) are assigned the
smallest possible solution.

These are two ways to interpret circular definitions in a unique way. Nonethe-
less, there are cases where uniqueness is not fitting. Take the following two concepts
descriptions:

human = mammal ⊓ ∃parent.⊤⊓ ∀parent.human

horse = mammal ⊓ ∃parent.⊤⊓ ∀parent.horse

Then, according to the greatest fixpoint semantics horseI = humanI , and in the least

Chapter 5. Explicit Fixpoints 45

fixpoint interpretation horseI = humanI = ∅I . Thus, neither of these definitions are
desirable. In this case, we prefer descriptive semantics: it is arbitrary how human
and horses initially get assigned as long as the following holds:

I(human) = I(mammal ⊓ ∃parent.⊤⊓ ∀parent.human)

I(horse) = I(mammal ⊓ ∃parent.⊤⊓ ∀parent.horse)

In this case, humans and horses do not need to have the same interpretation.
In conclusion, all three semantics are useful for different types of definitions.

Preferably, we get to use these in one interpretation. This brings us to the greatest
fixpoint constructor ν, and the least fixpoint constructor µ.

The aim of this chapter is to sketch the intuition behind these different fixpoints,
as well as to propose a calculus for a logic including all three types of semantics. All
statements that are not proven but are marked as ‘conjecture’.

5.2 Intuition

First, we obtain an intuition for the meaning of a greatest and least fixpoint operator,
based on [11]. We start with the greatest fixpoint. Assume a domain DI and a for-
mula ϕ(X). Then, we search for a subset A ⊆ DI where I(X) = A = I(ϕ(X 7→ A)),
such that A is the greatest solution that satisfies this equation. We write I(ϕ(X 7→
B)) to mean: the interpretation of ϕ(X) where the interpretation of X is mapped to
B ⊆ DI .

This searching procedure can be described in the following way. Consider the
biggest available collection: the domain DI . Then we plug that into the formula
and find its interpretation I(ϕ(X 7→ DI)) (from now on we write this as I(ϕ(DI)).
Then there are two possible outcomes, either I(ϕ(DI)) = DI or I(ϕ(DI)) ⊂ DI . If
it is the former, then we are done, and our greatest fixpoint is DI . If it is the latter
we continue the procedure, and consider I(ϕ(ϕ(DI))), etc. The idea is that there is
an ordinal α, finite or infinite, such that I(ϕα(DI)) = I(ϕα+1(DI)). In summary:

DI ⊇ I(ϕ(DI)) ⊇ I(ϕ(ϕ(DI))) ⊇ . . . ⊇ I(ϕα(DI)) = I(ϕα+1(DI)) = . . .

Now, let us introduce some notation. We say ναX.ϕ(X), to mean the αth approxi-
mation of our fixpoint. This means that ν0X.ϕ(X) = DI , ν1X.ϕ(X) = I(ϕ(X 7→
ν0X.ϕ(X))) = I(ϕ(DI)), ν2X.ϕ(X) = I(ϕ(X 7→ ν1X.ϕ(X))) = I(ϕ(ϕ(DI))) etc.
In the case sketched above, our greatest fixpoint is I(ϕα(DI))), and this would be
denoted as ναX.ϕ(X) = I(νX.ϕ(X)).

This was a sketch for the definition of the approximation of the greatest fixpoint:

Definition 5.2.1. • I0(X) = DI = ν0X.ϕ(X)

• Iα+1(X) = I(ϕ(X 7→ Iα(X))) for ordinal n

Chapter 5. Explicit Fixpoints 46

• Iλ(X) =
⋂

α<λ In(X) for limit ordinal λ and ordinal α

We want to relate this to the sequent calculus we have been discussing so far [12].
We consider the start rule and the rules for the greatest fixpoints:

Γ⊑0 ϕ
start

Γ, ϕ(X)⊑n ψ

Γ, X ⊑n ψ
νDe f L

Γ⊑n ψ(X)

Γ⊑n+1 X
νDe f R

Since we can always proof Λ⊑0 χ for all Λ, χ, we want a subset relation that always
holds, such as I⊓(Γ) ⊆ DI . This is good since the domain is our 0th approximation:
I(ϕ0(DI)) = DI . From here, we can applying our νDe f R rule to obtain the sequent
Γ⊑1 X. This is also a judgement that is always derivable, and thus we want this to
connect to the domain too: I1(X) = DI = I(ϕ0(DI)) = I0(ϕ(X)). We put the
notes 0 and 1 in the interpretation to denote we use the interpretation of X on ‘level’
1 (⊑1) and the interpretation of ϕ(X) on ‘level’ 0 (⊑0). Now let us assume we apply
certain rules in such a way that we derive Γ⊑1 ϕ(X). This allows us to apply De f R
again:

Γ⊑0 ϕ(X)

Γ⊑1 X
νDe f R

....
Γ⊑1 ϕ(X)

Γ⊑2 X
De f R

In order to get a sound derivation system we want I1(ϕ(X)) = I2(X).
We have approximated the 0th step of X, and we now apply ϕ again. We say the

I1(ϕ(X)) is equal to ϕ applied to the 0th approximation of the fixpoint X, and thus
I1(ϕ(X)) = I(ϕ(X 7→ ν0X.ϕ(X))) = I(ϕ(DI)). Then, the latter is the next approx-
imation of X, and thus I2(X) = ν1X.ϕ(X) = I(ϕ(X 7→ ν0X.ϕ(X))) = I1(ϕ(X)).

This gives us the following pattern:

Conjecture 5.2.2. 1. Γ⊑n+1 X iff I⊓(Γ) ⊆ νnX.ϕ(X)

2. Γ⊑n+1 ϕ(X) iff I⊓(Γ) ⊆ I(ϕn+1(DI)) = I(ϕ(X 7→ νnX.ϕ(X)))

3. Γ⊑∞ X iff I⊓(Γ) ⊆ I(νX.ϕ(X))

Note that this pattern considers the greatest fixpoint appearing on the right,
since that is when we go a step forward in our derivation. On the left we inter-
pret the fixpoint immediately as it’s greatest fixpoint and we just get I(νX.ϕ(X)) =

I(ϕ(νX.ϕ(X))).
We carry on to the approximation of the least fixpoint interpretation, µ. Here we

start looking for a fixpoint starting with the empty set. Let us say we find a fixpoint
at the nth approximation. We write I(ϕ(∅)) for I(ϕ(X 7→ ∅)). The searching would
look the following:

∅ ⊆ I(ϕ(∅)) ⊆ I(ϕ(ϕ(∅))) ⊆ . . . ⊆ I(ϕn(∅)) = I(ϕn+1(∅)) = . . .

Chapter 5. Explicit Fixpoints 47

Here, we say that µ0X.ϕ(X) = ∅, µ1X.ϕ(X) = I(ϕ(∅)), µ2X.ϕ(X) = I(ϕ(X 7→
µ1X.ϕ(X))) = I(ϕ(ϕ(∅))).

Using this sketch, we obtain a definition for the approximation of the least fix-
point:

Definition 5.2.3. • I0(X) = ∅ = µ0X.ϕ(X)

• Iα+1(X) = I(ϕ(X 7→ Iα(X))) for ordinal α

• Iλ(X) =
⋃

α<λ In(X) for limit ordinal λ and ordinal α

We now introduce the following rules for the least fixpoint semantics:

Γ, ϕ(X)⊑n ψ

Γ, X ⊑n+1 ψ
µDe f L

Γ⊑n ϕ(X)

Γ⊑n X
µDe f R

We still consider of the previously defined start rule. Note, that the step n to n + 1 is
done when we find the formula ϕ(X) left of ⊑n instead of the right.

Assume the following derivation:

ϕ(X)⊑0 ψ
start

X ⊑1 ψ
µDe f L

....
ϕ(X)⊑1 ψ

X ⊑2 ψ
µDe f L

Then, similar to the greatest fixpoint semantics, we can assign interpretations per
level in the following way: I0(ϕ(X)) = ∅ and I1(X) = µ0X.ϕ(X) = ∅. This works
for the first step since ∅ ⊆ I(ψ) is a relation that holds for any ψ.

For the step from level 1 to 2, we assign the formulas the following way:

I1(ϕ(X)) = I(ϕ(∅)) = µ1X.ϕ(X) = I2(X)

We can generalize this to the following statement:

Conjecture 5.2.4. 1. ϕ(X)⊑n+1 ψ iff In+1(ϕ(X)) ⊆ I(ψ)

2. X ⊑n+1 ψ iff In+1(X) ⊆ I(ψ)

3. X ⊑∞ ψ iff I(µX.ϕ(X)) ⊆ I(ψ)

In this case the approximation of the least fixpoint is used for the left side of
⊑, but on the right side we just take the final interpretation of the least fixpoint
immediately such that I(µX.ϕ(X)) = I(ϕ(µX.ϕ(X))).

Let us now introduce a logic and a sequent calculus accounting for both fixpoints
as well as the descriptive semantics.

Chapter 5. Explicit Fixpoints 48

5.3 The Logic

We just consider the logic used in [12], and add the fixpoint constructs.

ϕ ::= P | X | ϕ⊓ ϕ | ∃r.ϕ | µX.ϕ(X) | νX.ϕ(X)

where TBoxes are still of the form X = ϕ(X). The interpretation is defined the
following way:

Definition 5.3.1 (Interpretation). An interpretation I for this logic is a function map-
ping formulas to subsets of a non-empty domain DI , according to the following
rules:

1. I(ϕ⊓ψ) = I(ϕ) ∩ I(ψ)

2. I(∃r.ϕ) = {x | ∃y. I(r)(x, y) and y ∈ I(ϕ)}

3. I(X) = I(ϕ(X))

4. I(µX.ϕ(X)) =
⋃

α<λ I(ϕ(X 7→ µnX.ϕ(X))) = I(ϕ(µX.ϕ(X))) for limit ordi-
nal λ and ordinal α.

5. I(νX.ϕ(X)) =
⋂

α<λ I(ϕ(X 7→ ναX.ϕ(X))) = I(ϕ(νX.ϕ(X))) for limit ordinal
λ and ordinal α.

The interpretation of 1-3 is just as we know so far. For points 4 and 5, we use
the interpretation as given by definitions 5.2.3 and 5.2.1, respectively. In this inter-
pretation, we expect this λ to be finite, due to the correspondence with our family of
relations ⊑n, but will not be further proven in this thesis.

We have the following derivation system:

Γ, ϕ⊑n ϕ
Ax Γ⊑0 ϕ

start
Γ, ϕ, ψ⊑n χ

Γ, ϕ⊓ψ⊑n χ
⊓ L

Γ⊑n ψ Γ⊑n χ

Γ⊑n ψ⊓ χ
⊓ R

ϕ⊑n ψ

Γ, ∃r.ϕ⊑n ∃r.ψ ∃
Γ, ϕ(µX.ϕ(X))⊑n ψ

Γ, µX.ϕ(X)⊑n+1 ψ
µDe f L

Γ⊑n ψ(µX.ψ(X))

Γ⊑n µX.ψ(X)
µDe f R

Γ, ϕ(νX.ϕ(X))⊑n ψ

Γ, νX.ϕ(X)⊑n ψ
νDe f L

Γ⊑n ψ(νX.ψ(X))

Γ⊑n+1 νX.ψ(X)
νDe f R

Γ, ϕ(X)⊑n ψ

Γ, X ⊑n ψ
De f L

Γ⊑n ψ(X)

Γ⊑n X
De f R

Chapter 5. Explicit Fixpoints 49

Using an example we show that our system works the way we want it to work.
Let X = µX.(P⊓∃r.X) and Y = νY.(P⊓∃r.Y). We can show X ⊑∞ Y, but we do not
have Y ⊑n X for any n > 0.

Let us show the first case, and consider it for n = 4:

P⊓∃r.X ⊑0 P⊓∃r.Y start

X ⊑1 P⊓∃r.Y
µDe f L

X ⊑2 Y
νDe f R

P, ∃r.X ⊑2 ∃r.Y ∃ P, ∃r.X ⊑2 P Ax

P, ∃r.X ⊑2 P⊓∃r.Y ⊓ R

P⊓∃r.X ⊑2 P⊓∃r.Y ⊓ L

X ⊑3 P⊓∃r.Y
µDe f L

X ⊑4 Y
νDe f R

while for the second case, there is no way to get out of ⊑0:

P, ∃r.Y ⊑0 P start
Y ⊑0 X start

P, ∃r.Y ⊑0 ∃r.X ∃

P, ∃r.Y ⊑0 P⊓∃r.X ⊓ R

P⊓∃r.Y ⊑0 P⊓∃r.X ⊓ L

P⊓∃r.Y ⊑0 X
µDe f R

Y ⊑0 X
νDe f L

However, it is not as easy to prove soundness and completeness for this system.
We can start off in a similar way, by giving a definition of ⊩. We use this definition
to prove that the rule

Γ ⊩ ψ ψ⊑n χ

Γ⊑n χ
pc

is admissible. Additionally, we use this definition to prove that Γ ⊩ ψ implies
I⊓(Γ) ⊆ I(ψ). Therefore, we do not want any of the rules in the definition of ⊩
to contain the step from n to n + 1. Furthermore, we can also not include the rule
µDe f R to ⊩, since the partial cut rule is not admissible anymore. Let us sketch that
argument. Assume we have a cut formula µX.ϕ(X), that is principal in both the
derivations Γ ⊩ ψ(µX.ψ(X)) and µX.ψ(X))⊑n χ:

Γ ⊩ ψ(µX.ψ(X))

Γ ⊩ µX.ψ(X)
µDe f R

ψ(µX.ψ(X))⊑n χ

µX.ψ(X)⊑n+1 χ
µDe f L

Γ⊑n+1 χ
pc

Then we transform this derivation to the following:

Γ ⊩ ψ(µX.ψ(X)) ψ(µX.ψ(X))⊑n χ

Γ⊑n χ
pc

We get Γ⊑n χ, but we needed to prove that Γ⊑n+1 χ.

Chapter 5. Explicit Fixpoints 50

Therefore we only add νDe f L to our definition of ⊩.

Definition 5.3.2. We write Γ ⊩ ψ if the judgement Γ⊑n ψ is derived using the rules
Ax, ⊓ L, νDe f L and De f L for all n ∈ N.

We can easily prove our lemma with that.

Lemma 5.3.3. If Γ ⊩ ψ and ψ⊑n χ then Γ⊑n χ.

Proof. We prove this by induction on the length of the derivation Γ ⊩ ψ and consider
the case where the last rule used is νDe f L.

• νDe f L:

Γ′, ϕ(νX.ϕ(X)) ⊩ ψ

Γ′, νX.ϕ(X) ⊩ ψ
νDe f L

ψ⊑n χ

Γ′, νX.ϕ(X)⊑n χ
pc

This derivation can be transformed to:

Γ′, ϕ(νX.ϕ(X)) ⊩ ψ ψ⊑n χ

Γ′, ϕ(νX.ϕ(X))⊑n χ
pc

Γ′, νX.ϕ(X)⊑n χ
νDe f L

Lemma 5.3.4. If Γ ⊩ ψ then I⊓(Γ) ⊆ I(ψ).

Proof. Again, we do an induction on the length of the derivation, and only consider
the case where the last rule used is νDe f L.

• νDe f L:

Γ′, ϕ(νX.ϕ(X))⊑n ψ

Γ′, νX.ϕ(X)⊑n ψ
νDe f L

By induction hypothesis we obtain I⊓(Γ′)∩I(ϕ(νX.ϕ(X))) ⊆ I(ψ). Then, be-
cause we are looking at the greatest fixpoint operator on the left of the deriva-
tion we have I(ϕ(νX.ϕ(X))) = I(νX.ϕ(X)).

Having adjusted our definition of ⊩, these lemmas still hold, but we are not
entirely happy. One of the benefits of ⊩ was that in the proof of lemma 5.3 we
had considered all of our left rules, and would only focus on the right rules in our
soundness definition using our generation lemma.

We can still get the following generation lemma, by a simple induction on the
length of the derivation. We state this lemma as a conjecture, since we do not prove
this.

Chapter 5. Explicit Fixpoints 51

Conjecture 5.3.5 (Generation). Suppose n > 0:

1. Γ⊑n µX.ψ(X) iff Γ⊑n ψ(µX.ψ(X))

2. Γ⊑n+1 νX.ψ(X) iff Γ⊑n ψ(νX.ψ(X))

3. Γ⊑n X iff Γ⊑n ψ(X)

However, this is not enough to prove soundness and completeness. We state
them in the following conjecture.

Conjecture 5.3.6 (Soundness & Completeness). Γ⊑∞ ψ iff Γ ⊨ ψ.

We can not continue to prove this with the elements we do have, since we do
not have soundness for the rule ⊑0. Instead, we could resort strategies often used in
modal mu-calculus, such as constructing an ill-founded proof and prune it to obtain
a counter example. Or make a comparison to the cut-free sequent calculus for modal
mu-calculus as presented in [2]. This is outside the scope of this thesis, and is left for
future research.

52

Chapter 6

Discussion

The aim of this chapter is to discuss and summarize the found results. First, we
discuss the difficulties that were found for applying the method of Hofmann to the
more complex DLs including disjunction and full negation. Then, we summarize
the work presented in this thesis and explain the personal contribution of the author.
Finally, some recommendations are presented for future research.

6.1 Problems in ALC

As described in the introduction, ALC is the DL containing all the logical connec-
tives:

ϕ ::= ⊤ | ⊥ | P | X | ¬ϕ | ϕ⊓ ϕ | ϕ⊔ ϕ | ∃r.ϕ | ∀r.ϕ

We will describe why the strategy as described in [12] does not work as easily for
the full logic ALC. First, we evaluate the possibility of adding the disjunction ⊔ to
the logic ALE . Then, we add ¬ to the logic AL.

6.1.1 Disjunction

Consider the following logic:

ϕ ::= ⊤ | ⊥ | P | ¬P | X | ϕ⊓ ϕ | ϕ⊔ ϕ | ∃r.ϕ | ∀r.ϕ

with the following interpretation:

Definition 6.1.1 (Interpretation). An interpretation I of the logic ALC is a function
mapping formulas to subsets of a non-empty domain DI , according to the following
rules:

1. I(⊤) = DI

2. I(X) = I(ϕ(X))

3. I(ϕ⊓ψ) = I(ϕ) ∩ I(ψ)

4. I(ϕ⊔ψ) = I(ϕ) ∪ I(ψ)

Chapter 6. Discussion 53

5. I(∃r.ϕ) = {x | ∃y ∈ DI . I(r)(x, y)&y ∈ I(ϕ)}

6. I(∀r.ϕ) = {x | ∀y ∈ DI . I(r)(x, y) → y ∈ I(ϕ)}

For this logic, it is desirable to have sets of sentences on both sides, in order to prove
the following two equivalences:

∃r.(ϕ⊔ψ) ≡ ∃r.ϕ⊔∃r.ψ

∀r.(ϕ⊓ψ) ≡ ∀r.ϕ⊔∀r.ψ

This motivates the following sequent calculus:

Γ, ϕ ⊑n ∆, ϕ
Ax Γ,⊥⊑n ∆ Ax⊥ Γ⊑n ∆,⊤ Ax⊤ Γ⊑0 ∆ start

Γ, ϕ, ψ⊑n ∆
Γ, ϕ⊓ψ⊑n ∆ ⊓ L

Γ⊑n ∆, ψ Γ⊑n ∆, χ

Γ⊑n ∆, ψ⊓ χ
⊓ R

Γ⊑n ρ

Ψ, ∀r.Γ⊑n ∀r.ρ, ∆ ∀

Γ, ϕ(X) ⊑n ∆
Γ, X ⊑n ∆

De f L
Γ ⊑n ∆, ϕ(X)

Γ ⊑n+1 ∆, X
De f R

ϕ ⊑n ∆
Γ, ∃r.ϕ ⊑n ∃r.∆, Ψ ∃

Γ⊑n ∆, ϕ, ψ

Γ⊑n ∆, ϕ⊔ψ
⊔ R

Γ, ϕ⊑n ∆ Γ, ψ⊑n ∆
Γ, ϕ⊔ψ⊑n ∆ ⊔ L

In order to prove soundness and completeness, our generation lemma for ∃ and ∀
needs to contain sets of sentences on the right, that is, Γ⊑n ∃r.ψ, ∆ and Γ⊑n ∀r.ψ, ∆.
However, this inversion is no longer as clear.

Let us consider the case of ∃r.ϕ. In the previous sections, our generation lemma
for ∃ was the following:

Γ⊑n ∃r.ϕ ↔ Γ ⊩ ∃r.ρ and ρ⊑n ϕ for some ρ

The direct translation from this, to involve sets, would be the following:

Γ⊑n ∃r.ϕ, ∆ ↔ Γ ⊩ ∃r.ρ, ∆ and ρ⊑n ϕ for some ρ

or, making the statement more similar to the rule ∃:

Γ⊑n ∃r.∆, Ψ ↔ Γ ⊩ ∃r.∆′, Ψ and ∆′ ⊑n ∆

Chapter 6. Discussion 54

However, it is not clear that this holds. Take for example the last rule used to be ∀.
Then ∃r.ρ has been derived using the weakening in the ∀ rule:

Γ′ ⊑n ψ

Λ, ∀r.Γ′ ⊑n ∀r.ψ, ∃r.ϕ, ∆′ ∀

Of course, we can add any formula ρ during weakening. However, it is not given
that there is a derivation Γ ⊩ ∃r.ρ, ∆′. Let us say that we add all the rules except
De f R to the definition of ⊩ so that we have the following definition:

Definition 6.1.2. We write Γ ⊩ ∆ if the judgement Γ⊑n ∆ can be derived by using
the rules Ax, Ax⊤, Ax⊥, ⊓ L, ⊔ L, ⊓ R, ⊔ R, ∃, ∀ and De f L for every n ∈ N.

We want to show that Γ ⊩ ∃r.ρ, ∆′ holds, but there is nothing preventing ∆′ to
have been derived using the De f R rule. A similar argument holds for the universal
quantifier.

Of course, the reason causing problems is the fact that we want to prove sound-
ness and completeness with respect to the greatest fixpoint semantics. Without the
rules De f R and De f L, we could have done a simple induction on the last rule used
to prove that Γ⊑n ∃r.ϕ, ∆ implies I⊓(Γ) ⊆ I(∃r.ϕ) ∪ I⊔(∆).

6.1.2 Negation

Adding the operator ¬ raises a similar issue but adds one more difficulty. Take the
following language.

ϕ ::= ⊤ | ⊥ | P | ¬ϕ | ϕ⊓ ϕ | ∀r.ϕ

Then we could define ∃ by: ∃r.ϕ ≡ ¬∀r.¬ϕ and ⊔ by: ϕ⊔ψ ≡ ¬(¬ϕ⊓¬ϕ).
We add the following rules for negation.

Γ⊑n ϕ, ∆
Γ,¬ϕ⊑n ∆

NegL
Γ, ϕ⊑n ∆

Γ⊑n ¬ϕ, ∆
NegR

With the appropriate interpretation:

I(¬ϕ) = DI − I(ϕ)

This gives us another problem with the generation lemma. For example, consider the
case Γ⊑n ∆ where ∆ consists only of propositional letters P, ⊥ and ⊤. Our previous
generation lemma, gives us Γ ⊩ ∆. We prove this by induction on the derivation

Chapter 6. Discussion 55

Γ⊑n ∆. Now consider the following derivation:

....
Γ′ ⊑n ϕ(X), ∆
Γ′ ⊑n+1 X, ∆

De f R

Γ′,¬X ⊑n+1 ∆
NegL

Thus, Γ⊑n ∆ has been derived using an application of the De f R rule. It is possible
to add more rules to the definition of ⊩, but we do not want ⊩ to contain the De f R
rule.

The strategy we have for proving soundness and completeness does not work,
and we would have needed to make more adjustments.

6.2 Summary

In this thesis, we extended the framework as introduced in [12] to a sequent calcu-
lus for the frame-based description language FL0, and the attribute languages AL′

and ALE ′, and we proved soundness and completeness with respect to the greatest
fixpoint semantics. Where Hofmann provided us the tools for the connectives ⊓ and
∃r, and we added connectives ⊤, ⊥, ∀, and the atomic negation. From this, we con-
clude that this framework works for intuitionistic logics where the connectives are
not interdefinable.

Then we applied this method to a quantifier-free DL containing the disjunction
⊔. We have a sequent calculus for this logic that is sound and complete with respect
to the greatest fixpoint semantics, but its proof required a new method using the
definition of pre-interpretations.

Furthermore, we give the motivation for the need for a calculus that includes a
least, greatest, and descriptive fixpoint all in one system. We propose a calculus and
give an intuition for the relation between the interpretation and the sequent calculus.
The actual proof of soundness and completeness is beyond the scope of this thesis.

6.3 Future research

In this work, the focus is on the standard connectives of DL and the cyclic extension
of the TBox. Another interesting aspect is to extend the framework of the small
DLs to include inverse roles or nominals (or other extensions) and to evaluate the
consequences for the sequent calculus, as well as the soundness and completeness
proofs. Other than extensions, one could include the ABox in the sequent calculi.
Now, our calculi only reason about a given TBox and an ABox is not included.

Since description logic is so closely related to modal logic, there is value in com-
paring Hofmann’s framework including least and greatest fixpoints to existing cal-
culi for modal mu-calculus such as the methods described in [1] and [3].

Chapter 6. Discussion 56

In [12], Hofmann analyzes the decidability of the ϕ ⊨des ψ relation for the logic
EL he presented based on his presented calculus. In future research, one could ana-
lyze the complexity of the relations Γ ⊨des ψ for the logics presented in this thesis.

Moreover, in this thesis the TBox only consists of equations of the form X =

ϕ(X). However, in applications of DL, the TBox often consists of subsumption rela-
tions ϕ⊑ψ. Hofmann considers a case where he includes these in his calculus as the
so-called ‘general inclusion axioms’. The addition of this notion can be studied for
the logics presented here.

57

Bibliography

[1] Bahareh Afshari and Graham E Leigh. “Circular proofs for the modal mu-
calculus”. In: Pamm 16.1 (2016), pp. 893–894.

[2] Bahareh Afshari and Graham E Leigh. “Cut-free completeness for modal mu-
calculus”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). IEEE. 2017, pp. 1–12.

[3] Bahareh Afshari, Graham E Leigh, and Guillermo Menéndez Turata. “Uni-
form interpolation from cyclic proofs: the case of modal mu-calculus”. In: In-
ternational Conference on Automated Reasoning with Analytic Tableaux and Related
Methods. Springer. 2021, pp. 335–353.

[4] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Description logics”. In: Hand-
book on ontologies. Springer, 2004, pp. 3–28.

[5] Franz Baader and Ulrike Sattler. “An overview of tableau algorithms for de-
scription logics”. In: Studia Logica 69.1 (2001), pp. 5–40.

[6] Franz Baader et al. Introduction to description logic. Cambridge University Press,
2017.

[7] Piero A Bonatti and Adriano Peron. “On the undecidability of logics with con-
verse, nominals, recursion and counting”. In: Artificial Intelligence 158.1 (2004),
pp. 75–96.

[8] Ronald J Brachman and Hector J Levesque. “The tractability of subsumption
in frame-based description languages”. In: AAAI. Vol. 84. 1984, pp. 34–37.

[9] Torben Braüner. “Hybrid Logic”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Spring 2022. Metaphysics Research Lab, Stanford Univer-
sity, 2022.

[10] Giuseppe De Giacomo and Maurizio Lenzerini. “A uniform framework for
concept definitions in Description Logics”. In: Journal of Artificial Intelligence
Research 6 (1997), pp. 87–110. DOI: 10.1613/jair.334.

[11] Erich Gradel and Wolfgang Thomas. Automata, logics, and infinite games: a guide
to current research. Vol. 2500. Springer Science & Business Media, 2002.

[12] Martin Hofmann. “Proof-theoretic approach to description-logic”. In: 20th An-
nual IEEE Symposium on Logic in Computer Science (LICS’05). IEEE. 2005, pp. 229–
237.

[13] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory. 43. Cam-
bridge University Press, 2000.

https://doi.org/10.1613/jair.334

	Abstract
	Acknowledgements
	Introduction
	Description Logic
	Variations
	Proof Theory

	Hofmann's Sequent Calculus
	Structure and goal

	Frame-based Description Languages
	Introduction
	Sequent Calculus
	Soundness
	Completeness

	Attribute Languages
	Introduction
	TEXT
	Soundness
	Completeness

	TEXT
	Soundness
	Completeness

	Quantifier-free Description Logic
	Introduction
	Soundness
	Completeness

	Explicit Fixpoints
	Introduction
	Intuition
	The Logic

	Discussion
	TEXT
	Disjunction
	Negation

	Summary
	Future research

	Bibliography

